Influence of Macro Synthetic Fibers on the Flexural Behavior of Reinforced Concrete Slabs with Opening

Rajai Z. Al-Rousan

Abstract


In this study, the flexural behavior of one-way RC slabs after adding the macro discontinuous structural synthetic fiber (DSSF) under different opening sizes is investigated. Based on the previously conducted research, the 0.55 DSSF percentage was utilized since it was reported as the optimum value for enhancing the slab's performance. Moreover, further increases in the DSSF percentages proved to have the same improvement obtained by the 0.55%. Experimental testing was carried out on sixty-four one-way slabs under the effects of square opening existence (with or without), heat levels of 20, 200, 400, and 600 °C, and opening sizes of 100, 150, and 200 mm. The opening was created at the maximum bending moment region at the slab's center between the two loading points. For comparison purposes, the tested slabs were divided into main groups based on the DSSF existence. It was found that the resulted improvement by adding the DSSF material is affected by the size of the created opening. Furthermore, results revealed an increasing linear relationship between the applied load and the deflection and between the longitudinal concrete strain and the steel reinforcement. Besides, duplicating the opening size enhances the ductility index value by a maximum improvement percentage of 13% under an opening size ratio of less than 4.5%, while the improvement percentage becomes less under a further increase in the opening size ratio. Moreover, initial stiffness is more affected by increasing the temperature values twice those recorded for the yielding stiffness.

 

Doi: 10.28991/CEJ-2022-08-09-016

Full Text: PDF


Keywords


Macro; Discontinuous Structural Synthetic Fiber; Flexural Behavior; Reinforced Concrete; Slab Opening.

References


ACI 544.1R-96. Report on Fiber Reinforced Concrete. American Concrete Institute (ACI), Farmington Hills, United States.

Baran, E., & Arsava, T. (2012). Flexural strength design criteria for concrete beams reinforced with high-strength steel strands. Advances in Structural Engineering, 15(10), 1781–1792. doi:10.1260/1369-4332.15.10.1781.

Abdul-Ahad, R. B., & Aziz, O. Q. (1999). Flexural strength of reinforced concrete T-beams with steel fibers. Cement and Concrete Composites, 21(4), 263–268. doi:10.1016/s0958-9465(99)00009-8.

Altun, F., Haktanir, T., & Ari, K. (2007). Effects of steel fiber addition on mechanical properties of concrete and RC beams. Construction and Building Materials, 21(3), 654–661. doi:10.1016/j.conbuildmat.2005.12.006.

Campione, G., & Letizia Mangiavillano, M. (2008). Fibrous reinforced concrete beams in flexure: Experimental investigation, analytical modelling and design considerations. Engineering Structures, 30(11), 2970–2980. doi:10.1016/j.engstruct.2008.04.019.

Dancygier, A. N., & Savir, Z. (2006). Flexural behavior of HSFRC with low reinforcement ratios. Engineering Structures, 28(11), 1503–1512. doi:10.1016/j.engstruct.2006.02.005.

Chunxiang, Q., & Patnaikuni, I. (1999). Properties of high-strength steel fiber-reinforced concrete beams in bending. Cement and Concrete Composites, 21(1), 73–81. doi:10.1016/S0958-9465(98)00040-7.

Adom-Asamoah, M., & Kankam, C. K. (2009). Flexural behaviour of one-way concrete slabs reinforced with steel bars milled from scrap metals. Materials and Design, 30(5), 1737–1742. doi:10.1016/j.matdes.2008.07.048.

Swamy, R. N., & Sa’ad, A. (1981). Deformation and Ultimate Strength in Flexure of Reinforced Concrete Beams Made With Steel Fiber Concrete. Journal of the American Concrete Institute, 78(5), 395–405. doi:10.14359/10525.

Yang, J. M., Min, K. H., Shin, H. O., & Yoon, Y. S. (2012). Effect of steel and synthetic fibers on flexural behavior of high-strength concrete beams reinforced with FRP bars. Composites Part B: Engineering, 43(3), 1077–1086. doi:10.1016/j.compositesb.2012.01.044.

Azzawi, R., & Varughese, N. (2020). Flexural behavior of preflex sfrc-encased steel joist composite beams. Results in Engineering, 7, 100122. doi:10.1016/j.rineng.2020.100122.

Khalid, M. Y., Al Rashid, A., Arif, Z. U., Sheikh, M. F., Arshad, H., & Nasir, M. A. (2021). Tensile strength evaluation of glass/jute fibers reinforced composites: An experimental and numerical approach. Results in Engineering, 10, 100232. doi:10.1016/j.rineng.2021.100232.

Khalid, M. Y., Al Rashid, A., Arif, Z. U., Ahmed, W., Arshad, H., & Zaidi, A. A. (2021). Natural fiber reinforced composites: Sustainable materials for emerging applications. Results in Engineering, 11, 100263. doi:10.1016/j.rineng.2021.100263.

Al-Rousan, R. Z. (2018). Behavior of macro synthetic fiber concrete beams strengthened with different CFRP composite configurations. Journal of Building Engineering, 20, 595–608. doi:10.1016/j.jobe.2018.09.009.

Enochsson, O., Lundqvist, J., Täljsten, B., Rusinowski, P., & Olofsson, T. (2007). CFRP strengthened openings in two-way concrete slabs - An experimental and numerical study. Construction and Building Materials, 21(4), 810–826. doi:10.1016/j.conbuildmat.2006.06.009.

Asadei, P., Ibell, T., & Nanni, A. (2003). Experimental results of one-way slabs with openings strengthened with CFRP laminates. Fibre-Reinforced Polymer Reinforcement for Concrete Structures. doi:10.1142/9789812704863_0105.

ACI 318-14. (2014). Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute (ACI), Farmington Hills, United States.

di Prisco, M., Plizzari, G., & Vandewalle, L. (2009). Fibre reinforced concrete: new design perspectives. Materials and Structures, 42(9), 1261–1281. doi:10.1617/s11527-009-9529-4.

Sorelli, L. G., Meda, A., & Plizzari, G. A. (2006). Steel fiber concrete slabs on ground: a structural matter. ACI Materials Journal, 103(4), 551. doi:10.14359/16431.

Mobasher, B., Yao, Y., & Soranakom, C. (2015). Analytical solutions for flexural design of hybrid steel fiber reinforced concrete beams. Engineering Structures, 100, 164–177. doi:10.1016/j.engstruct.2015.06.006.

Barros, J. A. O., Taheri, M., & Salehian, H. (2015). A model to simulate the moment-rotation and crack width of FRC members reinforced with longitudinal bars. Engineering Structures, 100, 43–56. doi:10.1016/j.engstruct.2015.05.036.

Pujadas, P., Blanco, A., De La Fuente, A., & Aguado, A. (2012). Cracking behavior of FRC slabs with traditional reinforcement. Materials and Structures, 45(5), 707–725. doi:10.1617/s11527-011-9791-0.

Minelli, F., & Plizzari, G. A. (2013). On the effectiveness of steel fibers as shear reinforcement. ACI Structural Journal, 110(3), 379–389. doi:10.14359/51685596.

Hawkins, N. M., & Mitchell, D. (1979). Progressive Collapse of Flat Plate Structures. CI Journal Proceedings, 76(7), 775–808. doi:10.14359/6981.

Mitchell, D., & Cook, W. D. (1984). Preventing Progressive Collapse of Slab Structures. Journal of Structural Engineering, 110(7), 1513–1532. doi:10.1061/(asce)0733-9445(1984)110:7(1513).

Michels, J., Waldmann, D., Maas, S., & Zürbes, A. (2012). Steel fibers as only reinforcement for flat slab construction - Experimental investigation and design. Construction and Building Materials, 26(1), 145–155. doi:10.1016/j.conbuildmat.2011.06.004.

Michels, J., Christen, R., & Waldmann, D. (2013). Experimental and numerical investigation on post-cracking behavior of steel fiber reinforced concrete. Engineering Fracture Mechanics, 98(1), 326–349. doi:10.1016/j.engfracmech.2012.11.004.

Pujadas, P., Blanco, A., Cavalaro, S., & Aguado, A. (2014). Plastic fibres as the only reinforcement for flat suspended slabs: Experimental investigation and numerical simulation. Construction and Building Materials, 57, 92–104. doi:10.1016/j.conbuildmat.2014.01.082.

Destrée, X. (2008). Free suspended elevated slabs of steel fibre reinforced concrete: full scale test results and design. 941-950, 7th International symposium of fiber-reinforced concrete: design and applications BEFIB, 17-19 September, 2008, Chennai, India.

RILEM TC 162-TDF. (2003). Test and design methods for steel fibre reinforced concrete. Materials and Structures, 36, 560-567.

Alrawashdeh, A., & Eren, O. (2022). Mechanical and physical characterisation of steel fibre reinforced self-compacting concrete: Different aspect ratios and volume fractions of fibres. Results in Engineering, 13, 100335. doi:10.1016/j.rineng.2022.100335.

Gapsari, F., Djakfar, L., Handajani, R. P., Yusran, Y. A., Hidayatullah, S., Suteja, Rangappa, S. M., & Siengchin, S. (2022). The application of timoho fiber coating to improve the composite performance. Results in Engineering, 15, 100499. doi:10.1016/j.rineng.2022.100499.

Roesler, J. R., Altoubat, S. A., Lange, D. A., Rieder, K. A., & Ulreich, G. R. (2006). Effect of synthetic fibers on structural behavior of concrete slabs-on-ground. ACI Materials Journal, 103(1), 3–10. doi:10.14359/15121.

Attari, N., Amziane, S., & Chemrouk, M. (2012). Flexural strengthening of concrete beams using CFRP, GFRP and hybrid FRP sheets. Construction and Building Materials, 37, 746–757. doi:10.1016/j.conbuildmat.2012.07.052.

Kara, I. F., Ashour, A. F., & Köroğlu, M. A. (2015). Flexural behavior of hybrid FRP/steel reinforced concrete beams. Composite Structures, 129, 111–121. doi:10.1016/j.compstruct.2015.03.073.

Ababneh, A., Al-Rousan, R., Alhassan, M., & Alqadami, M. (2017). Influence of synthetic fibers on the shear behavior of lightweight concrete beams. Advances in Structural Engineering, 20(11), 1671–1683. doi:10.1177/1369433217691773.

Al-Rousan, R. Z. (2018). Empirical and NLFEA prediction of bond-slip behavior between DSSF concrete and anchored CFRP composites. Construction and Building Materials, 169, 530–542. doi:10.1016/j.conbuildmat.2018.03.013.

Al-Rousan, R. Z., Alhassan, M. A., & AlShuqari, E. A. (2018). Behavior of plain concrete beams with DSSF strengthened in flexure with anchored CFRP sheets—Effects of DSSF content on the bonding length of CFRP sheets. Case Studies in Construction Materials, 9, 195. doi:10.1016/j.cscm.2018.e00195.

Amin, A., Foster, S. J., Gilbert, R. I., & Kaufmann, W. (2017). Material characterisation of macro synthetic fibre reinforced concrete. Cement and Concrete Composites, 84, 124–133. doi:10.1016/j.cemconcomp.2017.08.018.

Mathews, M. E., Kiran, T., Hasa Naidu, V. C., Jeyakumar, G., & Anand, N. (2020). Effect of high-temperature on the mechanical and durability behaviour of concrete. Materials Today: Proceedings, 42, 718–725. doi:10.1016/j.matpr.2020.11.153.

Serafini, R., Dantas, S. R. A., Salvador, R. P., Agra, R. R., Rambo, D. A. S., Berto, A. F., & de Figueiredo, A. D. (2019). Influence of fire on temperature gradient and physical-mechanical properties of macro-synthetic fiber reinforced concrete for tunnel linings. Construction and Building Materials, 214, 254–268. doi:10.1016/j.conbuildmat.2019.04.133.

Far, H., & Nejadi, S. (2021). Experimental investigation on interface shear strength of composite PVC encased macro-synthetic fibre reinforced concrete walls. Structures, 34, 729–737. doi:10.1016/j.istruc.2021.08.008.

Carnovale, D., & Vecchio, F. J. (2014). Effect of fiber material and loading history on shear behavior of fiber-reinforced concrete. ACI Structural Journal, 111(5), 1235–1244. doi:10.14359/51686809.

Srikar, G., Anand, G., & Suriya Prakash, S. (2016). A Study on Residual Compression Behavior of Structural Fiber Reinforced Concrete Exposed to Moderate Temperature Using Digital Image Correlation. International Journal of Concrete Structures and Materials, 10(1), 75–85. doi:10.1007/s40069-016-0127-x.

Bažant, Z. P., & Kaplan, M. F. (1996). Concrete at high temperatures: material properties and mathematical models. Longman Group Limited, London, United Kingdom.

Rambo, D. A. S., Blanco, A., Figueiredo, A. D. de, Santos, E. R. F. dos, Toledo, R. D., & Gomes, O. da F. M. (2018). Study of temperature effect on macro-synthetic fiber reinforced concretes by means of Barcelona tests: An approach focused on tunnels assessment. Construction and Building Materials, 158, 443–453. doi:10.1016/j.conbuildmat.2017.10.046.

Walraven, J. C. (2009). High performance fiber reinforced concrete: Progress in knowledge and design codes. Materials and Structures/Materiaux et Constructions, 42(9), 1247–1260. doi:10.1617/s11527-009-9538-3.

Nana, W. S. A., Tran, H. V., Goubin, T., Kubisztal, G., Bennani, A., Bui, T. T., Cardia, G., & Limam, A. (2021). Behaviour of macro-synthetic fibers reinforced concrete: Experimental, numerical and design code investigations. Structures, 32, 1271–1286. doi:10.1016/j.istruc.2021.03.080.

Richardson, A., & Coventry, K. (2015). Dovetailed and hybrid synthetic fibre concrete - Impact, toughness and strength performance. Construction and Building Materials, 78, 439–449. doi:10.1016/j.conbuildmat.2015.01.003.

Richardson, A., Coventry, K., Lamb, T., & Mackenzie, D. (2016). The addition of synthetic fibres to concrete to improve impact/ballistic toughness. Construction and Building Materials, 121, 612–621. doi:10.1016/j.conbuildmat.2016.06.024.

Gopalaratnam, V. S., & Gettu, R. (1995). On the characterization of flexural toughness in fiber reinforced concretes. Cement and Concrete Composites, 17(3), 239–254. doi:10.1016/0958-9465(95)99506-O.

Shah, S. P., & Rangan, B. V. (1971). Closure to “Effects of Reinforcements on Ductility of Concrete.” Journal of the Structural Division, 97(10), 2604–2604. doi:10.1061/jsdeag.0003029.

Foster, S. J. (2014). FRC design according to the draft Australian bridge code. Proceedings FRC 2014 Joint ACI-fib International Workshop Fibre Reinforced Concrete: From Design to Structural Applications, 24-25 July 2014, Polytechnique Montreal, Montreal, Canada.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-09-016

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 RAJAI Z. AL-ROUSAN

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message