Evaluation of Volumetric Properties of Cassava Peel Ash Modified Asphalt Mixtures

O. J. Aladegboye, O.- D. Oguntayo, E. Al-Ihekwaba, T. E. Daniel, P. C. Chiadighikaobi, P. Ng’andu

Abstract


In continuance to providing a reliable and cost-efficient road construction material that would aid the development of sustainable pavements while also eradicating agricultural wastes to protect the environment, Cassava Peel Ash (CPA) modified asphalt mixture is seen to be one of the most viable options. This study aimed to determine the suitability of Cassava Peel Ash (CPA) in hot mix asphalt for improved pavement performance. Using response surface methodology, a central composite design was employed for the mix design parameters, namely coarse aggregate (CA), fine aggregate (FA), mineral filler (MF), bitumen content (BC), and cassava peel ash (CPA). CPA was used as a partial replacement for filler and varied between 0% and 20%. The BC varied between 4% and 8%, the MF varied between 15% and 20%, the FA varied between 10% and 14%, and the CA varied between 46% and 52%. The interactive effect between the mix design parameters on the volumetric properties of the asphalt mixtures was evaluated. The results obtained showed the Marshall stability, flow, density, volume of the void, and void in mineral aggregates of the asphalt mixtures at 1.8037–8.045 kN, 2.7-8.22 mm, 2.0426–2.3909%, 1.094–7.966% and 55.5105–93.1393% respectively. These results indicate that the interaction of CA, FA, MF, BC, and CPA influences the volumetric properties of asphalt mixtures. From the RSM analysis, a prediction model and an optimal condition of 4.018% asphalt content, 20% cassava peel ash, 46% coarse aggregate, 10% fine aggregate, and 15% mineral filler were achieved for the asphalt mixtures.

 

Doi: 10.28991/CEJ-2022-08-10-07

Full Text: PDF


Keywords


Hot Mix Asphalt; Cassava Peel Ash; Marshall Stability; RSM; Pavement Engineering.

References


Plati, C., & Cliatt, B. (2019). A sustainability perspective for unbound reclaimed asphalt pavement (RAP) as a pavement base material. Sustainability (Switzerland), 11(1), 1–17. doi:10.3390/su11010078.

Modupe, A. E., Fadugba, O. G., Busari, A. A., Adeboje, A. O., Aladegboye, O. J., Alejolowo, O. O., & Chukwuma, C. G. (2021). Sustainability Assessment of the Engineering Properties of Asphalt Concrete Incorporating Pulverized Snail Shell Ash as Partial Replacement for Filler. IOP Conference Series: Earth and Environmental Science, 665(1), 12057. doi:10.1088/1755-1315/665/1/012057.

Graham, L. A. (2018). Pavement Preservation Best Practices Technical Briefs. Ph.D. Thesis, University of Nevada, Reno, United States.

Lee, K. W., & Mahboub, K. C. (2006). Asphalt mix design and construction: Past, present, and future. The Bituminous Material Committee of the Construction Institute of ASCE, A special publication for the 150th Anniversary of ASCE. doi:10.1061/9780784408421.

Eswan, E., Adisasmita, S. A., Ramli, M. I., & Rauf, S. (2021). Characteristics of Asphalt Mixed Using Mountain Stone. Civil Engineering Journal, 7(2), 268-277. doi:10.28991/cej-2021-03091652.

Chen, M., Lin, J., & Wu, S. (2011). Potential of recycled fine aggregates powder as filler in asphalt mixture. Construction and Building Materials, 25(10), 3909–3914. doi:10.1016/j.conbuildmat.2011.04.022.

Chen, J.-S., Kuo, P.-H., Lin, P.-S., Huang, C.-C., & Lin, K.-Y. (2007). Experimental and theoretical characterization of the engineering behavior of bitumen mixed with mineral filler. Materials and Structures, 41(6), 1015–1024. doi:10.1617/s11527-007-9302-5.

Abtahi, S. M., Sheikhzadeh, M., & Hejazi, S. M. (2010). Fiber-reinforced asphalt-concrete – A review. Construction and Building Materials, 24(6), 871–877. doi:10.1016/j.conbuildmat.2009.11.009.

Kalantar, Z. N., Karim, M. R., & Mahrez, A. (2012). A review of using waste and virgin polymer in pavement. Construction and Building Materials, 33, 55–62. doi:10.1016/j.conbuildmat.2012.01.009.

Huang, Y., Bird, R. N., & Heidrich, O. (2007). A review of the use of recycled solid waste materials in asphalt pavements. Resources, Conservation and Recycling, 52(1), 58–73. doi:10.1016/j.resconrec.2007.02.002.

Shu, X., & Huang, B. (2014). Recycling of waste tire rubber in asphalt and Portland cement concrete: An overview. Construction and Building Materials, 67, 217–224. doi:10.1016/j.conbuildmat.2013.11.027.

Al-Hdabi, A. (2016). Laboratory investigation on the properties of asphalt concrete mixture with Rice Husk Ash as filler. Construction and Building Materials, 126, 544–551. doi:10.1016/j.conbuildmat.2016.09.070.

Bi, Y., & Jakarni, F. (2019). Evaluating properties of wood ash modified asphalt mixtures. IOP Conference Series: Materials Science and Engineering, 512, 012004. doi:10.1088/1757-899x/512/1/012004.

Modupe, A. E., Olayanju, T. M. A., Atoyebi, O. D., Aladegboye, S. J., Awolusi, T. F., Busari, A. A., Aderemi, P. O., & Modupe, O. C. (2019). Performance evaluation of hot mix asphaltic concrete incorporating cow bone ash (CBA) as partial replacement for filler. IOP Conference Series: Materials Science and Engineering, 640(1). doi:10.1088/1757-899X/640/1/012082.

Adesanya, D. A., & Raheem, A. A. (2009). Development of corn cob ash blended cement. Construction and Building Materials, 23(1), 347–352. doi:10.1016/j.conbuildmat.2007.11.013.

Oluwatuyi, O. E., Adeola, B. O., Alhassan, E. A., Nnochiri, E. S., Modupe, A. E., Elemile, O. O., Obayanju, T., & Akerele, G. (2018). Ameliorating effect of milled eggshell on cement stabilized lateritic soil for highway construction. Case Studies in Construction Materials, 9, e00191. doi:10.1016/j.cscm.2018.e00191.

Adesanya, O. A., Oluyemi, K. A., Josiah, S. J., Adesanya, R., Shittu, L., Ofusori, D., ... & Babalola, G. (2008). Ethanol production by Saccharomyces cerevisiae from cassava peel hydrolysate. The Internet Journal of Microbiology, 5(1), 25-35. doi:10.5580/4f1.

Adegoke, D. D., Ogundairo, T. O., Olukanni, D. O., & Olofinnade, O. M. (2019). Application of Recycled Waste Materials for Highway Construction: Prospect and Challenges. Journal of Physics: Conference Series, 1378(2), 22058. doi:10.1088/1742-6596/1378/2/022058.

Ayodele, A. L., Mgboh, C. V, & Fajobi, A. B. (2021). Geotechnical properties of some selected lateritic soils stabilized with cassava peel ash and lime. Algerian Journal of Engineering and Technology, 04, 22–29. doi:10.5281/zenodo.4536448.

Raheem, Arubike, E. D., & Awogboro, O. S. (2015). Effects of Cassava Peel Ash (CPA) as Alternative Binder in Concrete. International Journal of Constructive Research in Civil Engineering, 1(2), 27–32.

Olatokunbo, O., Anthony, E., Rotimi, O., Solomon, O., Tolulope, A., John, O., & Adeoye, O. (2018). Assessment of strength properties of cassava peel ash-concrete. International Journal of Civil Engineering and Technology, 9(1), 965-974.

Osuide, E. E., Ukeme, U., & Osuide, M. O. (2021). An assessment of the compressive strength of concrete made with cement partially replaced with cassava peel ash. SAU Science-Tech Journal, 6(1), 64-73.

Olubunmi A, A., Taiye J., A., & Tobi, A. (2022). Compressive Strength Properties of Cassava Peel Ash and Wood Ash in Concrete Production. International Journal of New Practices in Management and Engineering, 11(01), 31–40. doi:10.17762/ijnpme.v11i01.171.

Ogunbode, E. B., Nyakuma, B. B., Jimoh, R. A., Lawal, T. A., & Nmadu, H. G. (2021). Mechanical and microstructure properties of cassava peel ash–based Kenaf bio-fibrous concrete composites. Biomass Conversion and Biorefinery, 2021, 1–11. doi:10.1007/s13399-021-01588-6.

Tang, Z., Li, Z., Hua, J., Lu, S., & Chi, L. (2022). Enhancing the damping properties of cement mortar by pre-treating coconut fibers for weakened interfaces. Journal of Cleaner Production, 134662. doi:10.1016/j.jclepro.2022.134662.

Salau, M. A., & Olonade, K. A. (2011). Pozzolanic potentials of cassava peel ash. Journal of Engineering Research, 16(1), 10-21.

Ubalua, A. O. (2007). Cassava wastes: Treatment options and value addition alternatives. African Journal of Biotechnology, 6(18), 2065–2073. doi:10.5897/ajb2007.000-2319.

ASTM D2487-17. (2020). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-17.

ASTM C127-15. (2016). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0127-15.

ASTM D5874-16. (2016). Standard Test Methods for Determination of the Impact Value (IV) of a Soil. ASTM International, Pennsylvania, United States. doi:10.1520/D5874-16.

ASTM C131-06. (2010). Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. ASTM International, Pennsylvania, United States. doi:10.1520/C0131-06.

ASTM C128-15. (2016). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0128-15.

ASTM D4719-20. (2020). Standard Test Methods for Prebored Pressuremeter Testing in Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D4719-20.

EN 1426:2015. (2015). Bitumen and bituminous binders. Determination of needle penetration. British Standard Institute (BSI), London, United Kingdom.

IS:1203. (1978). Methods for Testing Tar and Bituminous Materials: Determination of Penetration. Bureau of Indian Standard, New Delhi, India.

AASHTO D-5 (1993). AASHTO Guide for Design of Pavement Structures. American Association of State Highway and Transportation Officials, Vol. 1, Washington, United States.

IS:1208. (1978). Methods for Testing Tar and Bituminous Materials: Determination of ductility. Bureau of Indian Standard, New Delhi, India.

ASTM D113-99. (2010). Standard Test Method for Ductility of Bituminous Materials. ASTM International, Pennsylvania, United States. doi:10.1520/D0133-99.

IS:1209. (1978). Methods for Testing Tar and Bituminous Materials: determination of Flash Point and Fire Point. Bureau of Indian Standard, New Delhi, India.

IS:1206 (Part II). (1978). Methods for Testing Tar and Bituminous Materials: Determination of Viscosity. Bureau of Indian Standard, New Delhi, India.

ASTM D2171-07. (2010). Standard Test Method for Viscosity of Asphalts by Vacuum Capillary Viscometer. ASTM International, Pennsylvania, United States. doi:10.1520/D2171-07.

ASTM D70-18a. (2021). Standard Test Method for Density of Semi Solid Bituminous Materials (Pycnometer Method). ASTM International, Pennsylvania, United States. doi:10.1520/D0070-18A.

BS EN 1427:2015. (2015). Bitumen and bituminous binders. Determination of the softening point. Ring and Ball Method. British Standards Institution (BSI), London, United Kingdom.

IS:1205. (1978). Methods for Testing Tar and Bituminous Materials: determination of Softening Point. Bureau of Indian Standard, New Delhi, India.

ASTM D36-06. (2010). Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). ASTM International, Pennsylvania, United States. doi:10.1520/D0036-06.

ISO 2592:2017. (2017). Petroleum and related products-Determination of flash and fire points-Cleveland open cup method. International Organization for Standardization (ISO), Geneva, Switzerland.

ASTM D92-18. (2018). Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester. ASTM International, Pennsylvania, United States. doi:10.1520/D0092-18.

IS:1212. (1978). Methods for Testing Tar and Bituminous Materials: Determination of Loss on Heating. Bureau of Indian Standard, New Delhi, India.

IS:1211. (1978). Methods for Testing Tar and Bituminous Materials: Determination of Water Content (Dead and Stark Method). Bureau of Indian Standard, New Delhi, India.

ASTM-D1559. (1989). Test Method for resistance of plastic flow of Bituminous Mixtures Using Marshal Apparatus (Withdrawn 1998). ASTM International, Pennsylvania, United States.

ASTM A530/A530M-18. (2020). Standard Specification for General Requirements for Specialized Carbon and Alloy Steel Pipe. ASTM International, Pennsylvania, United States. doi:10.1520/A0530_A0530M-18

Myers H. R., Montgomery, D. C., & Anderson-Cook, C. A. (2016). Response Surface Methodology: Process and Product Optimization Using designed Experiments (3rd Ed.). Wiley, Hoboken, United States.

Hosseinpour, V., Kazemeini, M., & Mohammadrezaee, A. (2011). A study of the water-gas shift reaction in Ru-promoted Ir-catalysed methanol carbonylation utilizing experimental design methodology. Chemical Engineering Science, 66(20), 4798–4806. doi:10.1016/j.ces.2011.06.053.

Azargohar, R., & Dalai, A. K. (2005). Production of activated carbon from Luscar char: Experimental and modeling studies. Microporous and Mesoporous Materials, 85(3), 219–225. doi:10.1016/j.micromeso.2005.06.018.

Frigon, N. L., & Mathews, D. (1996). Practical guide to experimental design. John Wiley & Sons, Hoboken, United States.

Khuri, A. I., & Cornell, J. A. (1996). Response Surfaces: Designs and Analyses (2nd Ed.). Marcel Dekker Inc., New York, United States.

Obinna, A. C., Mbah, G. O., & Onoh, M. I. (2021). Optimization and Process Modelling of Viscosity of Oil Based Drilling Muds. Journal of Human, Earth, and Future, 2(4), 412-423. doi:10.28991/HEF-2021-02-04-09.

Montgomery, D. C. (2005). Design and Analysis of Experiments (6th Ed.). John Wiley and Sons, New York, United States.

Design-Expert software, v9, user’s guide (2013). Technical manual, Stat Ease Inc. Minneapolis, United States. Available online: http://www.statease.com/dx9.html (accessed on August 2022).


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-10-07

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Paschal Chimeremeze Chiadighikaobi, O. S Aladegboye, O.D. Oguntayo, E. Al-Ihekwaba, T.E. Daniel, P. Ng’andu

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message