Effect of the Mortar Volume Ratio on the Mechanical Behavior of Class CI Fly Ash-Based Geopolymer Concrete

Remigildus Cornelis, Henricus Priyosulityo, Iman Satyarno, Rochmadi ., Iwan Rustendi

Abstract


This research described the effect of the mortar volume ratio on the mechanical behavior of Class CI fly ash-based geopolymer concrete. The absolute volume ratio parameters were designed to determine the effects on the mechanical properties of the geopolymer concrete. The volume ratio of the mortar to coarse aggregate voids (Rc) was increased by 0.25 increments, from 1 to 1.75, using constant parameters of 10 M NaOH at a ratio of Na2SiO3to NaOH (R). Furthermore, the alkaline to fly ash ratio (A) of 0.35 and the volume ratio of paste to fine aggregate voids (Rm) of 1.5 were based on geopolymer paste and mortar investigations previously published. The test results showed that 1) the Rc ratio influences the workability and compressive strength of geopolymer concrete; 2) the increase in the Rc ratio by 1.75 is not linear with the rise in compressive strength but produces better mechanical properties; 3) it does not affect the tensile strength of both geopolymer and OPC concretes; 4) the lower the Rc ratio, the higher the flexural strength; 5) the Rc ratio does not affect the OPC concrete and GC tensile strength; 6) the bond stress in geopolymer concrete with an Rc ratio of 1.75 is higher than in OPC concrete; and 7) Rc ratio does not affect the early strength of geopolymer concrete. The geopolymer concrete experienced an increase in compressive strength after 28 days, while the OPC concrete remained flat. The results will help develop an optimal mix design of Class CI fly ash with moderate calcium oxide in the production of geopolymer concrete. This will improve the future applications of using this process in new binding materials.

 

Doi: 10.28991/CEJ-2022-08-09-012

Full Text: PDF


Keywords


Mortar Volume Ratio; Fly Ash; Class-CI; Geopolymer Concrete; Mechanical Behavior.

References


Fox, J. (2017). Fly Ash Classification–Old and New Ideas. World of Coal Ash Conference, 9-11 May, 2017, Lexington, United States.

Wattimena, O. K., Antoni, & Hardjito, D. (2017). A review on the effect of fly ash characteristics and their variations on the synthesis of fly ash based geopolymer. AIP Conference Proceedings. doi:10.1063/1.5003524.

Xu, H., & Van Deventer, J. S. J. (2000). The geopolymerisation of alumino-silicate minerals. International Journal of Mineral Processing, 59(3), 247–266. doi:10.1016/S0301-7516(99)00074-5.

Winnefeld, F., Leemann, A., Lucuk, M., Svoboda, P., & Neuroth, M. (2010). Assessment of phase formation in alkali activated low and high calcium fly ashes in building materials. Construction and Building Materials, 24(6), 1086–1093. doi:10.1016/j.conbuildmat.2009.11.007.

Palomo, A., Blanco-Varela, M. T., Granizo, M. L., Puertas, F., Vazquez, T., & Grutzeck, M. W. (1999). Chemical stability of cementitious materials based on metakaolin. Cement and Concrete Research, 29(7), 997–1004. doi:10.1016/S0008-8846(99)00074-5.

Risdanareni, P., Puspitasari, P., & Januarti Jaya, E. (2017). Chemical and Physical Characterization of Fly Ash as Geopolymer Material. MATEC Web of Conferences, 97, 01031. doi:10.1051/matecconf/20179701031.

Ekaputri, J. J., Ulum, M. B., Triwulan, Bayuaji, R., Susanto, T. E., & Al Bakri Abdullah, M. M. (2015). A Comprehensive Characterization and Determination of Fly Ashes in Indonesia Using Different Methods. Applied Mechanics and Materials, 754–755, 320–325. doi:10.4028/www.scientific.net/amm.754-755.320.

Chindaprasirt, P., Chareerat, T., Hatanaka, S., & Cao, T. (2011). High-Strength Geopolymer Using Fine High-Calcium Fly Ash. Journal of Materials in Civil Engineering, 23(3), 264–270. doi:10.1061/(asce)mt.1943-5533.0000161.

Hadi, M. N. S., Zhang, H., & Parkinson, S. (2019). Optimum mix design of geopolymer pastes and concretes cured in ambient condition based on compressive strength, setting time and workability. Journal of Building Engineering, 23(November), 301–313. doi:10.1016/j.jobe.2019.02.006.

Vijaya Prasad, B., Anand, N., Arumairaj, P. D., Sanath Kumar, M., Dhilip, T., & Srikanth, G. (2021). Studies on Mechanical properties of High Calcium Fly ash based sustainable Geopolymer concrete. Journal of Physics: Conference Series, 2070(1), 012184. doi:10.1088/1742-6596/2070/1/012184.

Guo, X., Shi, H., & Dick, W. A. (2010). Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cement and Concrete Composites, 32(2), 142–147. doi:10.1016/j.cemconcomp.2009.11.003.

Chindaprasirt, P., De Silva, P., Sagoe-Crentsil, K., & Hanjitsuwan, S. (2012). Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems. Journal of Materials Science, 47(12), 4876–4883. doi:10.1007/s10853-012-6353-y.

Hanjitsuwan, S., Hunpratub, S., Thongbai, P., Maensiri, S., Sata, V., & Chindaprasirt, P. (2014). Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste. Cement and Concrete Composites, 45, 9–14. doi:10.1016/j.cemconcomp.2013.09.012.

Ridzuan, A. R. M., Khairulniza, A. A., & Arshad, M. F. (2015). Effect of sodium silicate types on the high calcium geopolymer concrete. Materials Science Forum, 803, 185–193. doi:10.4028/www.scientific.net/MSF.803.185.

Tennakoon, C., Sagoe-Crentsil, K., San Nicolas, R., & Sanjayan, J. G. (2015). Characteristics of Australian brown coal fly ash blended geopolymers. Construction and Building Materials, 101, 396–409. doi:10.1016/j.conbuildmat.2015.10.089.

Dirgantara, R., Gunasekara, C., Law, D. W., & Molyneaux, T. K. (2017). Suitability of Brown Coal Fly Ash for Geopolymer Production. Journal of Materials in Civil Engineering, 29(12), 4017247. doi:10.1061/(asce)mt.1943-5533.0002093.

Ramesh, V., & Srikanth, Dr. K. (2020). Mechanical Properties and Mix Design of Geopolymer concrete – A review. E3S Web of Conferences, 184, 01091. doi:10.1051/e3sconf/202018401091.

Jindal, B. B. (2019). Investigations on the properties of geopolymer mortar and concrete with mineral admixtures: A review. Construction and Building Materials, 227, 116644. doi:10.1016/j.conbuildmat.2019.08.025.

Ahmad Sofri, L., Mustafa Al Bakri Abdullah, M., Rosli Mohd Hasan, M., & Huang, Y. (2020). The Influence of Sodium Hydroxide Concentration on Physical Properties and Strength Development of High Calcium Fly Ash Based Geopolymer as Pavement Base Materials. IOP Conference Series: Materials Science and Engineering, 864(1), 012016. doi:10.1088/1757-899x/864/1/012016.

Hassan, A., Arif, M., & Shariq, M. (2019). Use of geopolymer concrete for a cleaner and sustainable environment – A review of mechanical properties and microstructure. Journal of Cleaner Production, 223, 704–728. doi:10.1016/j.jclepro.2019.03.051.

ASTM C143/C143M-12. (2015). Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0143_C0143M-12.

ASTM C618-12. (2017). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-12.

ASTM C128-15. (2016). Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0128-15.

ASTM C 136/C136M-19. (2020). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0136_C0136M-19.

ASTM C33/C33M-18. (2018). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M.

ASTM C127-15 (2016). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0127-15.

SNI 03-2834-2000. (2000). Tata cara pembuatan rencana campuran beton normal. Indonesian National Standard (SNI), Jakarta, Indonesia. (In Indonesian).

Neville, A. M. (2012). Properties of concrete (5th Ed.). Pearson India, Noida, India.

Gupta, N., Siddique, R., & Belarbi, R. (2021). Sustainable and greener self-compacting concrete incorporating industrial by-products: A review. Journal of Cleaner Production, 284, 124803. doi:10.1016/j.jclepro.2020.124803.

Khalaf, A. A., & Kopecskó, K. (2020). Proposed simplified method of geopolymer concrete mix design. Concrete Structures, 21, 31–37. doi:10.32970/cs.2020.1.5.

Li, N., Shi, C., Zhang, Z., Zhu, D., Hwang, H. J., Zhu, Y., & Sun, T. (2018). A mixture proportioning method for the development of performance-based alkali-activated slag-based concrete. Cement and Concrete Composites, 93(May), 163–174. doi:10.1016/j.cemconcomp.2018.07.009.

Cornelis, R., Priyosulistyo, H., Satyarno, I., & Rochmadi. (2019). Workability and Strength Properties of Class C Fly Ash-Based Geopolymer Mortar. MATEC Web of Conferences, 258, 01009. doi:10.1051/matecconf/201925801009.

Cornelis, R., Priyosulistyo, H., Satyarno, I., & Rochmadi. (2018). The Investigation on Setting Time and Strength of High Calcium Fly Ash Based Geopolymer. Applied Mechanics and Materials, 881, 158–164. doi:10.4028/www.scientific.net/amm.881.158.

ASTM C230/C230M-20. (2021). Standard Specification for Flow Table for Use in Tests of Hydraulic Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0230_C0230M-20.

ASTM C39/C39M-21. (2021). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039M-21.

ASTM C496-96. (2017). Standard Test Method for Splitting Tensile Strength of cylindrical concrete specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0496-96.

ASTM C78/C78M-22. (2022). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM International, Pennsylvania, United States. doi:10.1520/C0078_C0078M-22.

ASTM C900-19. (2020). Standard test method for pull-out strenght of hardened concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0900-19.

Kitagawa, K., Watanabe, H., Tachibana, Y., Hiragi, H., & Kurita, A. (2001). Development of innovative composite systems between steel and concrete members. International Symposium on Connections between Steel and Concrete, 1333-1342, 10-12 September, 2001, Stuttgart, Germany.

Nath, S. K., Mukherjee, S., Maitra, S., & Kumar, S. (2014). Ambient and Elevated Temperature Geopolymerization Behaviour of Class F Fly Ash. Transactions of the Indian Ceramic Society, 73(2), 126–132. doi:10.1080/0371750X.2014.922428.

Zhang, P., Wang, K., Li, Q., Wang, J., & Ling, Y. (2020). Fabrication and engineering properties of concretes based on geopolymers/alkali-activated binders - A review. Journal of Cleaner Production, 258, 120896. doi:10.1016/j.jclepro.2020.120896.

Rangan, B. V. (2014). Geopolymer concrete for environmental protection. The Indian Concrete Journal, 88(4), 41–59.

Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., & Rangan, B. V. (2004). On the development of fly ash-based geopolymer concrete. ACI Materials Journal, 101(6), 467–472. doi:10.14359/13485.

Sofi, M., van Deventer, J. S. J., Mendis, P. A., & Lukey, G. C. (2007). Engineering properties of inorganic polymer concretes (IPCs). Cement and Concrete Research, 37(2), 251–257. doi:10.1016/j.cemconres.2006.10.008.

Muthadhi, A., Vanjinathan, J., & Durai, D. (2016). Experimental investigations on geo polymer concrete based on class C fly ash. Indian Journal of Science and Technology, 9(5). doi:10.17485/ijst/2016/v9i5/87270.

Fernandez-Jimenez, A. M., Palomo, A., & Lopez-Hombrados, C. (2006). Engineering properties of alkali-activated fly ash concrete. ACI Materials Journal, 103(2), 106. doi:10.14359/15261.

Diaz-Loya, E. I., Allouche, E. N., & Vaidya, S. (2011). Mechanical properties of fly-ash-based geopolymer concrete. ACI Materials Journal, 108(3), 300–306. doi:10.14359/51682495.

Sarker, P. K. (2010). Bond strength of reinforcing steel embedded in fly ash-based geopolymer concrete. Materials and Structures, 44(5), 1021–1030. doi:10.1617/s11527-010-9683-8.

Silva Filho, L. C. P., Vale Silva, B., Dal Bosco, V. I., Gomes, L. E. S., Barbosa, M. P., & Lorrain, M. (2012). Analysis of the influence of rebar geometry variations on bonding strength in the pull-out test. Conference: 4th Bond in Concrete: Bond, Anchorage, Detailing, June 2012, 63–68.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-09-012

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Remigildus Cornelis

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message