Analysis of Flood Discharge due to Impact of Tropical Cyclone

Denik Sri Krisnayanti, Philipi de Rozari, Vilkanova C. Garu, Alvine C. Damayanti, Djoko Legono, Hamdan Nurdin

Abstract


Tropical Cyclone Seroja, which occurred between April 2 to 6, 2021, is one of the strongest storms ever in East Nusa Tenggara. The track results of the cyclone showed that Seroja, formed at coordinates 10.5° S and 123° E, moved towards west longitude to Sumba Island and continued towards Australia. Moreover, the Global Precipitation Measurement (GPM) output was used to analyze the rainfall conditions at the center of the Seroja cyclone through the Kambaniru watershed in East Sumba, and the results showed that the precipitation continued to increase during Seroja's development to reach 225 mm. Therefore, this study aimed to analyze the effect of the rainfall during the storm on the maximum runoff experienced in the Kambaniru watershed through the application of quantitative analysis on the rainfall data from GPM data. The process involved analyzing the flood discharge using the HSS-SCS Curve Number method and GPM data, which were initially used to evaluate the rainfall during the TC Seroja due to limited field data. The results showed that the CN value in the Kambaniru watershed was in the AMC III condition with a curve number of 88.90 and the maximum flood during the Seroja storm was recorded to be 2,987 m3/s which is higher than the flood discharge for the 500 year return period. It was also discovered that the narrowing of the river channel on the Kambaniru Bridge section contributed to the collapse of the bridge.

 

Doi: 10.28991/CEJ-2022-08-09-01

Full Text: PDF


Keywords


Curve Number; Flash Flood; Rainfall; GPM; AMC.

References


Trewartha, G. T. (1995). Introduction to Climate (5th Ed.). Gadjah Mada University, Yogyakarta, Indonesia. (In Indonesian).

Meteorology Climatology and Geophysics Council. (2009). Tropical Cyclone. Meteorology Climatology and Geophysics Council, Jakarta, Indonesia. Available online: http://meteo.bmkg.go.id/siklon/learn/01/id (accessed on August 2022). (In Indonesian).

Kurniawan, R., Harsa, H., Nurrahmat, M. H., Sasmito, A., Florida, N., Makmur, E. E. S., Swarinoto, Y. S., Habibie, M. N., Hutapea, T. F., Hendri, Sudewi, R. S., Fitria, W., Praja, A. S., & Adrianita, F. (2021). The Impact of Tropical Cyclone Seroja to the Rainfall and Sea Wave Height in East Nusa Tenggara. IOP Conference Series: Earth and Environmental Science, 925(1), 12049. doi:10.1088/1755-1315/925/1/012049.

Kuttippurath, J., Sunanda, N., Martin, M. V., & Chakraborty, K. (2021). Tropical storms trigger phytoplankton blooms in the deserts of north Indian Ocean. NPJ Climate and Atmospheric Science, 4(1), 1–12. doi:10.1038/s41612-021-00166-x.

Perawiska, E., Muliadi, M., & Adriat, R. (2018). Analysis of Weather Elements at the Time of Tropical Cyclone Haiyan Using the WRF Model (Weather Research and Forecasting). Prisma Fisika, 6(2), 129-136. (In Indonesian).

Maass, M., Ahedo-Hernández, R., Araiza, S., Verduzco, A., Martínez-Yrízar, A., Jaramillo, V. J., Parker, G., Pascual, F., García-Méndez, G., & Sarukhán, J. (2018). Long-term (33 years) rainfall and runoff dynamics in a tropical dry forest ecosystem in western Mexico: Management implications under extreme hydrometeorological events. Forest Ecology and Management, 426, 7–17. doi:10.1016/j.foreco.2017.09.040.

Agustín Breña-Naranjo, J., Pedrozo-Acuña, A., Pozos-Estrada, O., Jiménez-López, S. A., & López-López, M. R. (2015). The contribution of tropical cyclones to rainfall in Mexico. Physics and Chemistry of the Earth, Parts A/B/C, 111–122. doi:10.1016/j.pce.2015.05.011.

Sparks, P. R. (2003). Wind speeds in tropical cyclones and associated insurance losses. Journal of Wind Engineering and Industrial Aerodynamics, 91(12–15), 1731–1751. doi:10.1016/j.jweia.2003.09.018.

Liu, M., Smith, J. A., Yang, L., & Vecchi, G. A. (2022). Tropical Cyclone Flooding in the Carolinas. Journal of Hydrometeorology, 23(1), 53–70. doi:10.1175/JHM-D-21-0113.1.

Zhang, Q., Gu, X., Shi, P., & Singh, V. P. (2017). Impact of tropical cyclones on flood risk in southeastern China: Spatial patterns, causes and implications. Global and Planetary Change, 150, 81–93. doi:10.1016/j.gloplacha.2017.02.004.

Sani, L. F. (2015). Tropical Storm Haiyan's Effect on Rain Patterns in Indonesia. Jurnal Fisika Unand, 4(2), 157-166. (In Indonesian).

Hairan, M. H., Jamil, N. R., Looi, L. J., & Amal Azmai, M. N. (2021). The assessment of environmental flow status in Southeast Asian Rivers: A review. Journal of Cleaner Production, 295, 126411. doi:10.1016/j.jclepro.2021.126411.

Aminatun, S., & Anggraheni, D. (2018). Pengaruh Badai Tropis Cempaka Terhadap Kejadian Tanah Longsor di Kabupaten Bantul Yogyakarta. Jurnal Teknologi Rekayasa, 3(1), 105. doi:10.31544/jtera.v3.i1.2018.105-114.

CNN Indonesia. (2021). BMKG Warning about Cyclone Seroja in NTT Early Today. National. Available online: https://www.cnnindonesia.com/nasional/20210405000321-20-625881/peringatan-bmkg-soal-siklon-seroja-di-ntt-dini-hari-ini (accessed on August 2022). (In Indonesian).

Sekaranom, A.B., Putri, N. H., & Puspaningrani, F.C. (2021). The impacts of Seroja Tropical Cyclone towards extreme weather in East Nusa Tenggara. E3S Web of Conferences, 325, 01020. doi:10.1051/e3sconf/202132501020.

iNews.id. (2021). East Sumba Hurricane Seroja Hits, 5,000 Residents' Houses Are Damaged. Available online: https://regional.inews.id/berita/sumba-timur-diterjang-badai-seroja-5000-rumah-warga-rusak (accessed on August 2022). (In Indonesian).

Center for Water Resources Development. (2014). Potential of Water Resources for Raw Water Supply on Sumba Island, East Nusa Tenggara. Scientific Manuscripts. Research and Development Ministry of Public Works, Bandung, Indonesia. (In Indonesian).

National Aeronautics and Space Administration. (2022). Giovanni. The Bridge between Data and Science v. 4.35. Available online: https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on August 2022).

Meiser, P., Pfeiffer, D., & Purbohadiwidjojo, M. (1965). Hydrogeological Map of the Isle of Sumba 1: 250,000. Bundesanstalt für Bodenforschung.

Aminatun, S., & Anggraheni, D. (2018). Pengaruh Badai Tropis Cempaka Terhadap Kejadian Tanah Longsor di Kabupaten Bantul Yogyakarta. Jurnal Teknologi Rekayasa, 3(1), 105. doi:10.31544/jtera.v3.i1.2018.105-114.

Zheng, Y., Li, J., Dong, L., Rong, Y., Kang, A., & Feng, P. (2020). Estimation of initial abstraction for hydrological modeling based on global land data assimilation system–simulated datasets. Journal of Hydrometeorology, 21(5), 1051–1072. doi:10.1175/JHM-D-19-0202.1.

NEH (National Engineering Handbook). (2004c). Chapter 9 and 10: Estimation of Direct Runoff from Storm Rainfall, Part 630 Hydrology National Engineering Handbook, United States department of Agriculture USDA, Washington DC, United States.

Mishra, S. K., Suresh Babu, P., & Singh, V. P. (2007). SCS-CN method revisited. Advances in Hydraulics and Hydrology; Water Resources Publications, Littleton, CO, United States.

Hawkins, R. H. (2001). Discussion of ‘Another Look at SCS-CN Method by SK Mishra and VP Singh. Journal of Hydrologic Engineering, 451-452. doi:10.1061/(ASCE)1084-0699(2001)6:5(451).

Snyder, Franklin F. (1938). Synthetic unit-graphs. Eos, Transactions American Geophysical Union, 19(1), 447. doi:10.1029/tr019i001p00447.

Ponce, V. M. (1989). Engineering hydrology: Principles and practices. Prentice Hall, Englewood Cliffs, United States.

TribunJabar. (2013). East Sumba Hit by Flash Flood. Available online: https://jabar.tribunnews.com/2013/02/26/sumba-timur-diterjang-banjir-bandang (accessed on August 2022). (In Indonesian).

Ramadhan, R., Muharsyah, R., Marzuki, Yusnaini, H., Vonnisa, M., Hashiguchi, H., Suryanto, W., & Sholihun. (2022). Evaluation of GPM IMERG Products for Extreme Precipitation over Indonesia. Journal of Physics: Conference Series, 2309(1), 12008. doi:10.1088/1742-6596/2309/1/012008.

Mazzoglio, P., Laio, F., Balbo, S., Boccardo, P., & Disabato, F. (2019). Improving an extreme rainfall detection system with GPM IMERG data. Remote Sensing, 11(6), 677. doi:10.3390/rs11060677.

Verma, P., & Ghosh, S. K. (2018). Study of GPM-IMERG rainfall data product for Gangotri glacier. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(5), 383–388. doi:10.5194/isprs-archives-XLII-5-383-2018.

Japan Meteorology Agency. Available online: http://www.jma.go.jp/ (accessed on August 2022). (In Japanese).

Inamoto, A. (1996). Report of Groundwater Survey in Sumba Island, Nusa Tenggara Timur, Indonesia. Japan International Corporation Agency (JICA), 1-17.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-09-01

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Denik Sri Krisnayanti, Philipi de Rozari, Vilkanova C Garu, Alvine Cinta Damayanti, Djoko Legono

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message