Assessing the Wastewater Pollutants Retaining for a Soil Aquifer Treatment using Batch Column Experiments
Downloads
Doi: 10.28991/CEJ-2022-08-07-011
Full Text: PDF
[2] Yu, H., Li, J., Liu, J., He, S., Qin, K., Xia, X., Xue, C., Zhao, Q., & Wei, L. (2022). HYDRUS-2D simulations of typical pollutant migration in a soil aquifer system in the Zibo-Weifang funnel area of China. Journal of Cleaner Production, 345,131099. doi:10.1016/j.jclepro.2022.131099.
[3] Jadeja, N. B., Banerji, T., Kapley, A., & Kumar, R. (2022). Water pollution in India – Current scenario. Water Security, 16, 100119. doi:10.1016/j.wasec.2022.100119.
[4] Gharoon, N., & Pagilla, K. R. (2021). Critical review of effluent dissolved organic nitrogen removal by soil/aquifer-based treatment systems. Chemosphere, 269, 129406. doi:10.1016/j.chemosphere.2020.129406.
[5] Sharma, S. K., & Kennedy, M. D. (2017). Soil aquifer treatment for wastewater treatment and reuse. International Biodeterioration and Biodegradation, 119, 671–677. doi:10.1016/j.ibiod.2016.09.013.
[6] Hellauer, K., Uhl, J., Lucio, M., Schmitt-Kopplin, P., Wibberg, D., Hübner, U., & Drewes, J. E. (2018). Microbiome-Triggered Transformations of Trace Organic Chemicals in the Presence of Effluent Organic Matter in Managed Aquifer Recharge (MAR) Systems. Environmental Science and Technology, 52(24), 14342–14351. doi:10.1021/acs.est.8b04559.
[7] Besançon, A., Pidou, M., Jeffrey, P., Jefferson, B., & Le Corre, K. S. (2017). Impact of pre-treatment technologies on soil aquifer treatment. Journal of Water Reuse and Desalination, 7(1), 1–10. doi:10.2166/wrd.2016.163.
[8] Sendrós, A., Urruela, A., Himi, M., Alonso, C., Lovera, R., Tapias, J. C., Rivero, L., Garcia-Artigas, R., & Casas, A. (2021). Characterization of a shallow coastal aquifer in the framework of a subsurface storage and soil aquifer treatment project using electrical resistivity tomography (Port de la selva, spain). Applied Sciences (Switzerland), 11(6). doi:10.3390/app11062448.
[9] Brooks, J., Weisbrod, N., & Bar-Zeev, E. (2020). Revisiting soil aquifer treatment: Improving biodegradation and filtration efficiency using a highly porous material. Water (Switzerland), 12(12). doi:10.3390/w12123593.
[10] Morrison, C. M., Betancourt, W. Q., Quintanar, D. R., Lopez, G. U., Pepper, I. L., & Gerba, C. P. (2020). Potential indicators of virus transport and removal during soil aquifer treatment of treated wastewater effluent. Water Research, 177. doi:10.1016/j.watres.2020.115812.
[11] Sallwey, J., Jurado, A., Barquero, F., & Fahl, J. (2020). Enhanced removal of contaminants of emerging concern through hydraulic adjustments in soil aquifer treatment. Water (Switzerland), 12(9). doi:10.3390/w12092627.
[12] Parimalarenganayaki, S. (2021). Managed Aquifer Recharge in the Gulf Countries: A Review and Selection Criteria. Arabian Journal for Science and Engineering, 46(1), 1–15. doi:10.1007/s13369-020-05060-x.
[13] Zucker, I., Mamane, H., Cikurel, H., Jekel, M., Hübner, U., & Avisar, D. (2015). A hybrid process of biofiltration of secondary effluent followed by ozonation and short soil aquifer treatment for water reuse. Water Research, 84, 315–322. doi:10.1016/j.watres.2015.07.034.
[14] Trussell, S., Tiwari, S., Gerringer, F., Trussell, R., Drewes, J., Nellor, M., & Johnson, S. (2015). Enhancing the soil aquifer treatment process for potable reuse. WateReuse Research Foundation. Project, 12-12.
[15] Amin, H. M., Gad, A. A. M., El-Rawy, M., Abdelghany, U. A., & Sadeek, R. A. (2021). Assessment of wastewater contaminant concentration through the vadose zone in a soil aquifer treatment system. Applied Ecology and Environmental Research, 19(3), 2385–2403. doi:10.15666/aeer/1903_23852403.
[16] Regnery, J., Barringer, J., Wing, A. D., Hoppe-Jones, C., Teerlink, J., & Drewes, J. E. (2015). Start-up performance of a full-scale riverbank filtration site regarding removal of DOC, nutrients, and trace organic chemicals. Chemosphere, 127, 136–142. doi:10.1016/j.chemosphere.2014.12.076.
[17] Ajjur, S. B., & Baalousha, H. M. (2021). A review on implementing managed aquifer recharge in the Middle East and North Africa region: methods, progress and challenges. Water International, 46(4), 578–604. doi:10.1080/02508060.2021.1889192.
[18] Alrwashdeh, S. S., Ammari, H., Madanat, M. A., & Al-Falahat, A. A. M. (2022). The effect of heat exchanger design on heat transfer rate and temperature distribution. Emerging Science Journal, 6(1), 128-137. doi:10.28991/esj-2022-06-01-010.
[19] Gharoon, N., & Pagilla, K. R. (2021). Critical review of effluent dissolved organic nitrogen removal by soil/aquifer-based treatment systems. Chemosphere, 269. doi:10.1016/j.chemosphere.2020.129406.
[20] Priyadharshini, B., Nandini, Raji, V. R., & Kavisri, M. (2015). Estimation of aquifer parameter by well dilution technique. International Journal of Applied Engineering Research, 10(5), 11777–11786.
[21] Wei, L., Wang, K., Noguera, D. R., Jiang, J., Oyserman, B., Zhao, N., Zhao, Q., & Cui, F. (2016). Transformation and speciation of typical heavy metals in soil aquifer treatment system during long time recharging with secondary effluent: Depth distribution and combination. Chemosphere, 165, 100–109. doi:10.1016/j.chemosphere.2016.09.027.
[22] Zhang, X., Yang, Y. S., Lu, Y., Wen, Y. J., Li, P. P., & Zhang, G. (2018). Bioaugmented soil aquifer treatment for P-nitrophenol removal in wastewater unique for cold regions. Water research, 144, 616-627. doi:10.1016/j.watres.2018.08.004.
[23] Martins, T., Leití£o, T. E., & Carvalho, M. R. (2017). Assessment of Wastewater Contaminants Retention for a Soil-aquifer Treatment System Using Soil-column Experiments. Procedia Earth and Planetary Science, 17, 332–335. doi:10.1016/j.proeps.2016.12.084.
[24] Tsangaratos, P., Kallioras, A., Pizpikis, T., Vasileiou, E., Ilia, I., & Pliakas, F. (2017). Multi-criteria Decision Support System (DSS) for optimal locations of Soil Aquifer Treatment (SAT) facilities. Science of the Total Environment, 603–604, 472–486. doi:10.1016/j.scitotenv.2017.05.238.
[25] Sopilniak, A., Elkayam, R., Rossin, A. V., & Lev, O. (2018). Emerging organic pollutants in the vadose zone of a soil aquifer treatment system: Pore water extraction using positive displacement. Chemosphere, 190, 383–392. doi:10.1016/j.chemosphere.2017.10.010.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.