Influence of Compaction Energy on Cement Stabilized Soil for Road Construction

Younes Sadek, Tayeb Rikioui, Toufik Abdoun, Abdellah Dadi


Compactness is an important feature to ensure subgrade stability where temperature and water infiltration exist in semi-arid areas. Chemical soil stabilization can improve soil properties. This research studies the impact of compaction energy on stabilized subgrade soil and how to improve its geotechnical characteristics in the experimental tests on both unstabilized and stabilized soil samples by adding ordinary Portland cement and sulfate-resistant cement, in percentages by the soil's weight, in order of identification and classification, to the strength properties tests: compaction at multiple energies, CBR, and UCS. A test protocol was followed to assess the relationship between cement soil treatment, mechanical characteristics, and compaction parameters at different energy levels. Findings show that the higher UCS values were recorded with an increase in compaction energy. The MDD of cement stabilized soil increases as compaction energy increases, whereas the OMC decreases, the UCS improves, and the CBR increases. These improvements have a positive influence on the performance of soil used as a subgrade. The combination of cement stabilization and a high compaction level for subgrades using weak soil can improve strength parameters throughout any phase of earthwork construction design that leads to strengthening subgrades, reducing the thickness, and, as a result, low construction cost.


Doi: 10.28991/CEJ-2022-08-03-012

Full Text: PDF


Compaction Energy; Subgrade; Soil Stabilization; Cement; Geotechnics; Soil Strength.


Bera, A. K. (2014). Compaction characteristics of fine grained soil and rice husk ash mixture. International Journal of Geotechnical Engineering, 8(2), 121–129. doi:10.1179/1939787913Y.0000000007.

Drew, I. R. (2005). Influence of compaction energy on soil engineering properties. Master Thesis. Iowa State University, Iowa USA. Available online: (accessed on January 2022).

Vinod, P. P., Sridharan, A., & Soumya, R. J. (2015). Effect of compaction energy on CBR and compaction behaviour. Proceedings of the Institution of Civil Engineers: Ground Improvement, 168(2), 116–121. doi:10.1680/grim.13.00059.

Attom, M. F. (1997). The effect of compactive energy level on some soil properties. Applied Clay Science, 12(1–2), 61–72. doi:10.1016/S0169-1317(96)00037-3.

Sridharan, A., & Gurtug, Y. (2004). Swelling behaviour of compacted fine-grained soils. Engineering Geology, 72(1–2), 9–18. doi:10.1016/S0013-7952(03)00161-3.

Basack, S., Goswami, G., Khabbaz, H., Karakouzian, M., Baruah, P., & Kalita, N. (2021). A Comparative Study on Soil Stabilization Relevant to Transport Infrastructure using Bagasse Ash and Stone Dust and Cost Effectiveness. Civil Engineering Journal, 7(11), 1947–1963. doi:10.28991/cej-2021-03091771.

Sabat, A. K., & Moharana, R. K. (2015). Effect of compaction energy on engineering properties of fly ash -granite dust stabilized expansive soil. International Journal of Engineering and Technology, 7(5), 1617–1624.

Yusoff, S. A. N. M., Bakar, I., Wijeyesekera, D. C., Zainorabidin, A., Azmi, M., & Ramli, H. (2017). The effects of different compaction energy on geotechnical properties of kaolin and laterite. AIP Conference Proceedings, 1875(1). doi:10.1063/1.4998380.

Ene, E., & Okagbue, C. (2009). Some basic geotechnical properties of expansive soil modified using pyroclastic dust. Engineering Geology, 107(1-2), 61–65. doi:10.1016/j.enggeo.2009.03.007.

Alhaji, M. M., Alhassan, M., Adejumo, T. W., & Jibrin, R. (2020). Effect of Density on Consolidation and Creep Parameters of Clay. Indonesian Journal of Science and Technology, 5(1), 31–44. doi:10.17509/ijost.v5i1.16819.

Khalid, N., Mukri, M., Kamarudin, F., & Abdul Ghani, A. H. (2020). Effect of compaction characteristics on hydraulic conductivity performance for sedimentary residual soil mixed bentonite as compacted liners. IOP Conference Series: Earth and Environmental Science, 498(1), 12003. doi:10.1088/1755-1315/498/1/012003.

Srihandayani, S., Soehardi, F., & Putri, L. D. (2020). CBR Laboratory Analysis for Determining the Number of Compaction Tracks to Achieve Field CBR. IOP Conference Series: Earth and Environmental Science, 469(1), 12012. doi:10.1088/1755-1315/469/1/012012.

Lindh, P. (2004). Compaction- and strength properties of stabilised and unstabilized fine-grained tills. PhD Thesis, Soil Mechanics and Foundation Engineering. Lund University, Lund Sweden.

Rauch, A. F., Harmon, J. S., Katz, L. E., & Liljestrand, H. M. (2002). Measured effects of liquid soil stabilizers on engineering properties of clay. Transportation Research Record, 1787, 33–41. doi:10.3141/1787-04.

Vorobieff, G. (2006). A new approach to laboratory testing of stabilised materials. ARRB Conference, 22nd, 2006, Canberra, Australia (29 October-2 November 2006).

Anjaneyappa, A. M. (2013). Influence of Compaction Energy on Soil Stabilized with Chemical Stabilizer. International Journal of Research in Engineering and Technology, 2(13), 211. doi:10.15623/ijret.2013.0213037.

Santoni, R. L., Tingle, J. S., & Webster, S. L. (2002). Stabilization of silty sand with nontraditional additives. Transportation Research Record, 1787(1787), 61–72. doi:10.3141/1787-07.

Nwaiwu, C. M. O., Mshelia, S. H., & Durkwa, J. K. (2012). Compactive effort influence on properties of quarry dust-black cotton soil mixtures. International Journal of Geotechnical Engineering, 6(1), 91–101. doi:10.3328/IJGE.2012.06.01.91-101.

Pongsivasathit, S., Horpibulsuk, S., & Piyaphipat, S. (2019). Assessment of mechanical properties of cement stabilized soils. Case Studies in Construction Materials, 11, 301. doi:10.1016/j.cscm.2019.e00301.

Solihu, H. (2020). Cement Soil Stabilization as an Improvement Technique for Rail Track Subgrade, and Highway Subbase and Base Courses: A Review. Journal of Civil and Environmental Engineering, 10(3). doi:10.37421/jcde.2020.10.344.

Khan, K. A., Nasir, H., Alam, M., Khan, S. W., & Ahmad, I. (2020). Performance of Subgrade Soil Blended with Cement and Ethylene Vinyl Acetate. Advances in Civil Engineering, 2020. doi:10.1155/2020/9831615.

Consoli, N. C., Rotta, G. V., & Prietto, P. D. M. (2000). Influence of curing under stress on the triaxial response of cemented soils. Geotechnique, 50(1), 99–105. doi:10.1680/geot.2000.50.1.99.

Yilmaz, Y., & Ozaydin, V. (2013). Compaction and shear strength characteristics of colemanite ore waste modified active belite cement stabilized high plasticity soils. Engineering Geology, 155, 45–53. doi:10.1016/j.enggeo.2013.01.003.

Croft, J. B. (1967). The influence of soil mineralogical composition on cement stabilization. Geotechnique, 17(2), 119–135. doi:10.1680/geot.1967.17.2.119.

Croft, J. B. (1968). The problem in predicting the suitability of soils for cementitious stabilization. Engineering Geology, 2(6), 397–424. doi:10.1016/0013-7952(68)90018-5.

Horpibulsuk, S., Rachan, R., Chinkulkijniwat, A., Raksachon, Y., & Suddeepong, A. (2010). Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Construction and Building Materials, 24(10), 2011–2021. doi:10.1016/j.conbuildmat.2010.03.011.

Afrin, H. (2017). A Review on Different Types Soil Stabilization Techniques. International Journal of Transportation Engineering and Technology, 3(2), 19. doi:10.11648/j.ijtet.20170302.12.

Patel, M. A., & Patel, H. S. (2012). A Review on Effects of Stabilizing Agents for Stabilization of Weak Soil. Civil and Environmental Research 2(6), 1–7.

Mousavi, S., & Wong, L. S. (2015). Mechanical behavior of compacted and stabilized clay with kaolin and cement. Jordan Journal of Civil Engineering, 9(4), 477–486. doi:10.14525/jjce.9.4.3120.

Kodikara, J., & Yeo, R. (2005). Chapter 15 Performance evaluation of road pavements stabilized in situ. Elsevier Geo-Engineering Book Series, 3(C), 409–443. doi:10.1016/S1571-9960(05)80018-7.

NF P 94-093 (1999). Sols: Reconnaissance et essais: Détermination des références de compactage d’un matériau. In Essai Proctor Normal-Essai Proctor Modifié [Soils: Investigation and testing. Determination of the compaction characteristics of a soil. Standard Proctor test. Modified Proctor test]. Association Française de Normalisation, Paris, France.

NF P94-078 (1997). Sols: reconnaissance et essais-Indice CBR après immersion. Indice CBR immédiat. Indice Portant Immédiat-Mesure sur échantillon compacté dans le moule CBR. Association Française de Normalisation, Paris, France.

NF P94-077 (1997). Norme française." Sols : reconnaissance et essais—Essai de compression uni axiale. Association Française de Normalisation, Paris, France.

Al-Aghbari, M. Y., Mohamedzein, Y. E. A., & Taha, R. (2009). Stabilisation of desert sands using cement and cement dust. Proceedings of the Institution of Civil Engineers: Ground Improvement, 162(3), 145–151. doi:10.1680/grim.2009.162.3.145.

Adeyemi, G. O., & Abolurin, S. B. (2000). Strength characteristics of a chemically stabilized lateritic soil from kilometer 4, Ile–Ife/Sekona road, Southwestern Nigeria. Journal of Mining and Geology, 36(1), 113-119.

Jaritngam, S., Somchainuek, O., & Taneerananon, P. (2014). Feasibility of laterite-cement mixture as pavement base course aggregate. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 38(C1+), 275–284.

CTTP Algérie. (2001). Catalogue de des Chaussées Neuves Fascicule 1, NOTICE D'UTLISATION. Organisme National de Contrôle Technique des Travaux Publics, Kouba. Algérie.

Bowles, J. E. (1992). Engineering properties of soils and their measurement. Second edition. In Engineering properties of soils and their measurement (4th Edi.). McGraw-Hill Inc., New York City, United States.

Sabat, A. K., & Moharana, R. K. (2015). Effect of compaction energy on engineering properties of fly ash -granite dust stabilized expansive soil. International Journal of Engineering and Technology, 7(5), 1617–1624.

Amadi, A. A., & Eberemu, A. O. (2012). Delineation of compaction criteria for acceptable hydraulic conductivity of lateritic soil-bentonite mixtures designed as landfill liners. Environmental Earth Sciences, 67(4), 999–1006. doi:10.1007/s12665-012-1544-z.

Das, B. M. (2021). Principles of Geotechnical Engineering. Cengage Learning, Massachusetts, United States.

CEBTP. (1984). Guide pratique de dimensionnement des chaussées pour les pays tropicaux. ISBN2110848111. Available online: (accessed on January 2022).

Akmal Abd, N., Safuan A., A., Md Noor, N., & Yaacob, H. (2014). Effect of Cement Stabilized Kaolin Subgrade on Strength Properties. Journal of Applied Sciences, 14(8), 842–845. doi:10.3923/jas.2014.842.845.

Mousavi, S. E. (2017). Stabilization of compacted clay with cement and/or lime containing peat ash. Road Materials and Pavement Design, 18(6), 1304–1321. doi:10.1080/14680629.2016.1212729.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-03-012


  • There are currently no refbacks.

Copyright (c) 2022 Sadek younes, Sadek younes, rikioui tayeb, abdoun toufik, dadi abdallah

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.