Performance of Subbase Layer with Geogrid Reinforcement and Zeolite-Waterglass Stabilization
Downloads
Doi: 10.28991/CEJ-2022-08-02-05
Full Text: PDF
[2] Tuncer B., E., & Benson, C. H. (2007). Sustainable Construction Case History: Fly ash Stabilization of Road-Surface Gravel. In 2007 World of Coal Ash (WOCA), May 7-10, 2007, Northern Kentucky, World of Coal Ash, USA.
[3] Hatipoglu, B., Edil, T. B., & Benson, C. H. (2008). Evaluation of Base Prepared from Road Surface Gravel Stabilized with Fly Ash. Proc. of Geo- Congress 2008: Geotechnics of Waste Management and Remediation, 288–295. doi:10.1061/40970(309)36.
[4] Osinubi, K. J. (1998). Influence of compaction delay on the properties of cement stabilized lateritic soil. Journal of Engineering Research, 6(1), 13-26.
[5] Harianto, T., Du, Y. J., Hayashi, S., Suetsugu, D., & Nanri, Y. (2008). Geotechnical properties of soil-fiber mixture as a landfill cover barrier material. Geotechnical Engineering, 39(3), 137–143.
[6] Tang, C., Shi, B., Gao, W., Chen, F., & Cai, Y. (2007). Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes, 25(3), 194–202. doi:10.1016/j.geotexmem.2006.11.002.
[7] Harianto, T., Sitepu, F., & Jasruddin. (2019). Strength improvement of cement stabilized soil by binder mineral additive. Lowland Technology International, 21(2), 90–97.
[8] Liu, C., & Starcher, R. D. (2013). Effects of Curing Conditions on Unconfined Compressive Strength of Cement- and Cement-Fiber-Improved Soft Soils. Journal of Materials in Civil Engineering, 25(8), 1134–1141. doi:10.1061/(asce)mt.1943-5533.0000575.
[9] Mariri, M., Ziaie Moayed, R., & Kordnaeij, A. (2019). Stress–Strain Behavior of Loess Soil Stabilized with Cement, Zeolite, and Recycled Polyester Fiber. Journal of Materials in Civil Engineering, 31(12), 04019291. doi:10.1061/(asce)mt.1943-5533.0002952.
[10] Hasriana, Samang, L., Djide, M. N., & Harianto, T. (2018). A study on clay soil improvement with Bacillus subtilis bacteria as the road subbase layer. International Journal of GEOMATE, 15(52), 114–120. doi:10.21660/2018.52.97143.
[11] Indriani, A. M., Harianto, T., Djamaluddin, A. R., & Arsyad, A. (2021). Bioremediation of Coal Contaminated Soil as the Road Foundations Layer. International Journal of GEOMATE, 21(84), 76–84. doi:10.21660/2021.84.j2124.
[12] Harianto, T., & Utami, W. D. (2021). Effect of Mineral Additives on the Strength Characteristics of a Laterite Soil. In H. Hazarika (Ed.), Lecture Notes in Civil Engineering: Vol. 144 LNCE (pp. 423–431). doi:10.1007/978-981-16-0077-7_37.
[13] Carroll, R., Walls, J., & Haas, R. (1987). Granular base reinforcement of flexible pavements using geogrids. Proceeding of Geosynthetics' 87, IFAI, 46–57.
[14] Dong, Y.-L., Han, J., & Bai, X.-H. (2010). Bearing Capacities of Geogrid-Reinforced Sand Bases under Static Loading. Geotechnical Special Publication No. 207, GeoShanghai 2010 International Conference, ASCE, 275–281. doi:10.1061/41108(381)36.
[15] Guido, V. A. (1987). Plate Loading Tests on Geogrid-Reinforced Earth Slabs. In Geosynthetic Conference New Orleans, USA (pp. 216–225).
[16] DeMerchant, M. R., Valsangkar, A. J., & Schriver, A. B. (2002). Plate load tests on geogrid-reinforced expanded shale lightweight aggregate. Geotextiles and Geomembranes, 20(3), 173–190. doi:10.1016/S0266-1144(02)00006-7.
[17] ASTM C702-98. (1998). Standard Practice for reducing Samples of Aggregate to Testing Size. ASTM International West Conshohocken, PA, USA.
[18] ASTM D698-12. (2021). Standard Test Methods for Laboratory Compaction Characteristics of Soil using Standard Effort. ASTM International West Conshohocken, PA, USA.
[19] ASTM D2166-16. (2016). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International West Conshohocken, PA, USA.
[20] ASTM D1883-16. (2016). Standard Test Methods for California Bearing Ratio (CBR) of laboratory-Compacted Soils”. ASTM International West Conshohocken, PA, USA.
[21] ASTM D1194-94. (1994). Standard Test Method for Bearing Capacity of Soil for Static Load and Spread Footings. ASTM International West Conshohocken, PA, USA.
[22] Tardy, Y. (1997). Petrology of laterites and tropical soils. In Petrology of laterites and tropical soils, AA Balkema, San Francisco, CA, USA.
[23] Shirmohammadi, S., Jahromi, S. G., Payan, M., & Senetakis, K. (2021). Effect of lime stabilization and partial clinoptilolite zeolite replacement on the behavior of a silt-sized low-plasticity soil subjected to freezing–thawing cycles. Coatings, 11(8), 1–21. doi:10.3390/coatings11080994.
[24] MolaAbasi, H. (2017). Evaluation of zeolite effect on strength of babolsar sand stabilized with cement using unconfined compression test. Modares Civil Engineering journal, 16(20), 203-213.
[25] Goodarzian, A., Ghasemipanah, A., Moayed, R. Z., & Niroumand, H. (2020). Influence of Nanozeolite Particles on Improvement of Clayey Soil. International Journal of Geotechnical and Geological Engineering, 14(1), 40–48.
[26] Li, L., Benson, C. H., Edil, T. B., & Hatipoglu, B. (2008). Sustainable construction case history: Fly ash stabilization of recycled asphalt pavement material. Geotechnical and Geological Engineering, 26(2), 177–187. doi:10.1007/s10706-007-9155-2.
[27] Feng, N. Q., Li, G. Z., & Zang, X. W. (1990). High-strength and flowing concrete with a zeolitic mineral admixture. Cement, Concrete and Aggregates, 12(2), 61–69. doi:10.1520/cca10273j.
[28] S.N.I. (1994). Procedures for Soil Stabilization with Portland Cement for Roads”. Indonesian National Standard, Indonesia.
[29] Osula, D. O. A. (1989). Evaluation of admixture stabilization for problem laterite. Journal of Transportation Engineering, 115(6), 674–687. doi:10.1061/(ASCE)0733-947X(1989)115:6(674).
[30] Mengue, E., Mroueh, H., Lancelot, L., & Eko, R. M. (2017). Mechanical Improvement of a Fine-Grained Lateritic Soil Treated with Cement for Use in Road Construction. Journal of Materials in Civil Engineering, 29(11), 04017206. doi:10.1061/(asce)mt.1943-5533.0002059.
[31] Gabr, M. A., & Hart, J. H. (2000). Elastic Modulus of Geogrid-Reinforced Sand Using Plate Load Tests. Geotechnical Testing Journal, 23(2), 245–250. doi:10.1520/gtj11049j.
[32] Goodarzian, A., Ghasemipanah, A., Moayed, R. Z., & Niroumand, H. (2020). Influence of Nanozeolite Particles on Improvement of Clayey Soil. International Journal of Geotechnical and Geological Engineering, 14(1), 40–48.
[33] Zhou, H., & Wen, X. (2008). Model studies on geogrid- or geocell-reinforced sand cushion on soft soil. Geotextiles and Geomembranes, 26(3), 231–238. doi:10.1016/j.geotexmem.2007.10.002.
[34] Zhang, L., Zhao, M., Shi, C., & Zhao, H. (2010). Bearing capacity of geocell reinforcement in embankment engineering. Geotextiles and Geomembranes, 28(5), 475–482. doi:10.1016/j.geotexmem.2009.12.011.
[35] Koerner, R. M. (2012). Designing with geosynthetics-Vol. 1 (Vol. 1). Xlibris Corporation.
[36] Tafreshi, S. N. M., & Dawson, A. R. (2010). Behaviour of footings on reinforced sand subjected to repeated loading - Comparing use of 3D and planar geotextile. Geotextiles and Geomembranes, 28(5), 434–447. doi:10.1016/j.geotexmem.2009.12.007.
[37] Thakur, J. K., Han, J., Pokharel, S. K., & Parsons, R. L. (2012). Performance of geocell-reinforced recycled asphalt pavement (RAP) bases over weak subgrade under cyclic plate loading. Geotextiles and Geomembranes, 35, 14–24. doi:10.1016/j.geotexmem.2012.06.004.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.