A Novel Macroscopic Traffic Model based on Distance Headway
Abstract
Doi: 10.28991/CEJ-SP2021-07-03
Full Text: PDF
Keywords
References
Liu, H., Claudel, C., & Machemehl, R. (2021). Robust traffic control using a first order macroscopic traffic flow model. IEEE Transactions on Intelligent Transportation Systems, 1–15. doi:10.1109/TITS.2021.3075225.
Khan, Z. H., Imran, W., Azeem, S., Khattak, K. S., Gulliver, T. A., & Aslam, M. S. (2019). A macroscopic traffic model based on driver reaction and traffic stimuli. Applied Sciences (Switzerland), 9(14), 2848. doi:10.3390/app9142848.
Khan, Z. H., Gulliver, T. A., Nasir, H., Rehman, A., & Shahzada, K. (2019). A macroscopic traffic model based on driver physiological response. Journal of Engineering Mathematics, 115(1), 21–41. doi:10.1007/s10665-019-09990-w.
Iftikhar, A., Khan, Z. H., Gulliver, T. A., Khattak, K. S., Khan, M. A., Ali, M., & Minallahe, N. (2020). Macroscopic traffic flow characterization at bottlenecks. Civil Engineering Journal (Iran), 6(7), 1227–1242. doi:10.28991/cej-2020-03091543.
Imran, W., Khan, Z. H., Gulliver, T. A., Khattak, K. S., Saeed, S., & Aslam, M. S. (2021). Macroscopic traffic flow characterization for stimuli based on driver reaction. Civil Engineering Journal (Iran), 7(1), 1–13. doi:10.28991/cej-2021-03091632.
Sun, Y., & Tan, C. (2020). On a class of new nonlocal traffic flow models with look-ahead rules. Physica D: Nonlinear Phenomena, 413, 132663. doi:10.1016/j.physd.2020.132663.
Zhang, H. M. (1998). A theory of nonequilibrium traffic flow. Transportation Research Part B: Methodological, 32(7), 485–498. doi:10.1016/S0191-2615(98)00014-9.
Kessels, F. (2018). Traffic flow modelling. Introduction to Traffic Flow Theory through a Genealogy of Models. Springer. doi:10.1007/978-3-319-78695-7.
Payne, H. (1971). Models of freeway traffic and control. Mathematical Models of Public Systems 1, 1(1), 51–56. Available online: https://trid.trb.org/view.aspx?id=531574 (accessed on May 2021).
Whitman, G. B. (1974). Linear and Nonlinear Waves. Wiley. doi:10.4249/scholarpedia.4308.
Piccoli, B., & Tosin, A. (2013). Vehicular Traffic: A Review of Continuum Mathematical Models. In Encyclopedia of Complexity and Systems Science (pp. 1–37). doi:10.1007/978-3-642-27737-5_576-3.
Daganzo, C. F. (1995). Requiem for second-order fluid approximations of traffic flow. Transportation Research Part B, 29(4), 277–286. doi:10.1016/0191-2615(95)00007-Z.
Yu, L. (2020). A new continuum traffic flow model with two delays. Physica A: Statistical Mechanics and Its Applications, 545, 123757. doi:10.1016/j.physa.2019.123757.
Del Castillo, J. M., Pintado, P., & Benitez, F. G. (1994). The reaction time of drivers and the stability of traffic flow. Transportation Research Part B, 28(1), 35–60. doi:10.1016/0191-2615(94)90030-2.
Aw, A., & Rascle, M. (2000). Resurrection of “second order” models of traffic flow. SIAM Journal on Applied Mathematics, 60(3), 916–938. doi:10.1137/S0036139997332099.
Berg, P., Mason, A., & Woods, A. (2000). Continuum approach to car-following models. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 61(2), 1056–1066. doi:10.1103/PhysRevE.61.1056.
Zhang, H. M. (2002). A non-equilibrium traffic model devoid of gas-like behavior. Transportation Research Part B: Methodological, 36(3), 275–290. doi:10.1016/S0191-2615(00)00050-3.
Khan, Z. (2016). Traffic Modelling for Intelligent Transportation Systems. PhD Dissertation, Department of Electrical and Computer Engineering, University of Victoria, British Columbia, Canada. Available online: https://dspace.library.uvic.ca/handle/1828/7152 (accessed on January 2021).
Khan, Z. H., & Gulliver, T. A. (2020). A macroscopic traffic model based on transition velocities. Journal of Computational Science, 43, 101131. doi:10.1016/j.jocs.2020.101131.
Khan, Z. H., Imran, W., Gulliver, T. A., Khattak, K. S., Wadud, Z., & Khan, A. N. (2020). An anisotropic traffic model based on driver interaction. IEEE Access, 8, 66799–66812. doi:10.1109/ACCESS.2020.2985668.
Imran, W., Khan, Z. H., Gulliver, T. A., Khattak, K. S., & Nasir, H. (2020). A macroscopic traffic model for heterogeneous flow. Chinese Journal of Physics, 63, 419–435. doi:10.1016/j.cjph.2019.12.005.
Khan, Z. H., Ali Shah, S. A., & Gulliver, T. A. (2018). A macroscopic traffic model based on weather conditions. Chinese Physics B, 27(7), 70202. doi:10.1088/1674-1056/27/7/070202.
Fosu, G. O., Oduro, F. T., & Caligaris, C. (2021). Multilane analysis of a viscous second-order macroscopic traffic flow model. SN Partial Differential Equations and Applications, 2(1), 7. doi:10.1007/s42985-020-00054-8.
Peng, G., Yang, S., & Zhao, H. (2018). The difference of drivers’ anticipation behaviors in a new macro model of traffic flow and numerical simulation. Physics Letters, Section A: General, Atomic and Solid State Physics, 382(36), 2595–2597. doi:10.1016/j.physleta.2018.06.039.
Khan, Z. H., Gulliver, T. A., Azam, K., & Khattak, K. S. (2019). Macroscopic model on driver physiological and psychological behavior at changes in Traffic. Journal of Engineering and Applied Sciences, 38(2), 57–66. doi:10.25211/jeas.v38i2.3150.
Khan, Z. H., & Gulliver, T. A. (2018). A macroscopic traffic model for traffic flow harmonization. European Transport Research Review, 10(2), 30. doi:10.1186/s12544-018-0291-y.
Muralidharan, A. (2012). Tools for Modeling and Control of Freeway Networks. PhD Thesis, University of California, Berkeley, USA. Available online: https://digitalassets.lib.berkeley.edu/etd/ucb/text/Muralidharan_berkeley_0028E_12773.pdf (Accessed on March 2021).
Greenshields, B. D., Bibbins, J. R., Channing, W. S., & Miller, H. H. (1935). A study of traffic capacity. In Highway research board proceedings (Vol. 1935). National Research Council (USA), Highway Research Board.
Zheng, Y. Z., & Ge, H. X. (2016). Optimal velocity model with consideration of the lateral effect and its feedback control research. International Journal of Control, 89(6), 1152–1158. doi:10.1080/00207179.2015.1123297.
Basak, K., Hetu, S. N., Li, Z., Azevedo, C. L., Loganathan, H., Toledo, T., Xu, R., Xu, Y., Peh, L. S., & Ben-Akiva, M. (2013). Modeling reaction time within a traffic simulation model. IEEE Conference on Intelligent Transportation Systems, Proceedings, 302–309. doi:10.1109/ITSC.2013.6728249.
LeVeque, R. J. (1990). Numerical Methods for Conservation Laws. Lectures in Mathematics, ETH Zürich, Birkhäuser Verlag, Basel, Switzerland. doi:10.1007/978-3-0348-5116-9
Roe, P. L. (1981). Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43(2), 357–372. doi:10.1016/0021-9991(81)90128-5.
Kermani, M., & Plett, E. (2001). Modified entropy correction formula for the Roe scheme. In Aerospace Sciences Meeting and Exhibit (p. 83). doi:10.2514/6.2001-83.
Lighthill, M. J., & Whitham, J. B. (1955). On kinematic waves II. A theory of traffic flow on long crowded roads. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 229(1178), 317–345. doi:10.1098/rspa.1955.0089.
Morgan, J. V. (2002). Numerical Methods for Macroscopic Traffic Models. PhD Thesis, Department of Mathematics, University of Reading, Berkshire, United Kingdom. Available online: http://www.reading.ac.uk/web/files/maths/Jv_morgan.pdf (accessed on January 2021).
DOI: 10.28991/CEJ-SP2021-07-03
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Zawar Hussain Khan, T. Aaron Gulliver, Khurram S. Khattak
This work is licensed under a Creative Commons Attribution 4.0 International License.