A Novel Macroscopic Traffic Model based on Distance Headway

Zawar H. Khan, T. Aaron Gulliver, Khurram S. Khattak

Abstract


A new model is proposed to characterize changes in traffic at transitions. These changes are affected by driver response. The distance headway between vehicles is considered as it affects driver behavior. Driver response is quick with a small distance headway and slow when the distance headway is large. The variations in traffic are greater with a slow driver while traffic is smooth with a quick driver. A model is developed which characterizes traffic based on driver response and distance headway. This model is compared with the well-known and widely employed Zhang and PW models. The Zhang model characterizes driver response at transitions using an equilibrium velocity distribution and ignores distance headway and driver response. Traffic flow in the PW model is characterized using only a velocity constant. Roe decomposition is employed to evaluate the Zhang, PW, and proposed models over a 270 m circular (ring) road. Results are presented which show that Zhang model provides unrealistic results. The corresponding behavior with the proposed model has large variations in flow with a slow driver but is smooth with a quick driver. The PW model provides smooth changes in flow according to the velocity constant, but the behavior is unrealistic because it is not based on traffic physics.

 

Doi: 10.28991/CEJ-SP2021-07-03

Full Text: PDF


Keywords


Macroscopic Traffic; Headway; Driver Response; Zhang Model; PW Model.

References


Liu, H., Claudel, C., & Machemehl, R. (2021). Robust traffic control using a first order macroscopic traffic flow model. IEEE Transactions on Intelligent Transportation Systems, 1–15. doi:10.1109/TITS.2021.3075225.

Khan, Z. H., Imran, W., Azeem, S., Khattak, K. S., Gulliver, T. A., & Aslam, M. S. (2019). A macroscopic traffic model based on driver reaction and traffic stimuli. Applied Sciences (Switzerland), 9(14), 2848. doi:10.3390/app9142848.

Khan, Z. H., Gulliver, T. A., Nasir, H., Rehman, A., & Shahzada, K. (2019). A macroscopic traffic model based on driver physiological response. Journal of Engineering Mathematics, 115(1), 21–41. doi:10.1007/s10665-019-09990-w.

Iftikhar, A., Khan, Z. H., Gulliver, T. A., Khattak, K. S., Khan, M. A., Ali, M., & Minallahe, N. (2020). Macroscopic traffic flow characterization at bottlenecks. Civil Engineering Journal (Iran), 6(7), 1227–1242. doi:10.28991/cej-2020-03091543.

Imran, W., Khan, Z. H., Gulliver, T. A., Khattak, K. S., Saeed, S., & Aslam, M. S. (2021). Macroscopic traffic flow characterization for stimuli based on driver reaction. Civil Engineering Journal (Iran), 7(1), 1–13. doi:10.28991/cej-2021-03091632.

Sun, Y., & Tan, C. (2020). On a class of new nonlocal traffic flow models with look-ahead rules. Physica D: Nonlinear Phenomena, 413, 132663. doi:10.1016/j.physd.2020.132663.

Zhang, H. M. (1998). A theory of nonequilibrium traffic flow. Transportation Research Part B: Methodological, 32(7), 485–498. doi:10.1016/S0191-2615(98)00014-9.

Kessels, F. (2018). Traffic flow modelling. Introduction to Traffic Flow Theory through a Genealogy of Models. Springer. doi:10.1007/978-3-319-78695-7.

Payne, H. (1971). Models of freeway traffic and control. Mathematical Models of Public Systems 1, 1(1), 51–56. Available online: https://trid.trb.org/view.aspx?id=531574 (accessed on May 2021).

Whitman, G. B. (1974). Linear and Nonlinear Waves. Wiley. doi:10.4249/scholarpedia.4308.

Piccoli, B., & Tosin, A. (2013). Vehicular Traffic: A Review of Continuum Mathematical Models. In Encyclopedia of Complexity and Systems Science (pp. 1–37). doi:10.1007/978-3-642-27737-5_576-3.

Daganzo, C. F. (1995). Requiem for second-order fluid approximations of traffic flow. Transportation Research Part B, 29(4), 277–286. doi:10.1016/0191-2615(95)00007-Z.

Yu, L. (2020). A new continuum traffic flow model with two delays. Physica A: Statistical Mechanics and Its Applications, 545, 123757. doi:10.1016/j.physa.2019.123757.

Del Castillo, J. M., Pintado, P., & Benitez, F. G. (1994). The reaction time of drivers and the stability of traffic flow. Transportation Research Part B, 28(1), 35–60. doi:10.1016/0191-2615(94)90030-2.

Aw, A., & Rascle, M. (2000). Resurrection of “second order” models of traffic flow. SIAM Journal on Applied Mathematics, 60(3), 916–938. doi:10.1137/S0036139997332099.

Berg, P., Mason, A., & Woods, A. (2000). Continuum approach to car-following models. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 61(2), 1056–1066. doi:10.1103/PhysRevE.61.1056.

Zhang, H. M. (2002). A non-equilibrium traffic model devoid of gas-like behavior. Transportation Research Part B: Methodological, 36(3), 275–290. doi:10.1016/S0191-2615(00)00050-3.

Khan, Z. (2016). Traffic Modelling for Intelligent Transportation Systems. PhD Dissertation, Department of Electrical and Computer Engineering, University of Victoria, British Columbia, Canada. Available online: https://dspace.library.uvic.ca/handle/1828/7152 (accessed on January 2021).

Khan, Z. H., & Gulliver, T. A. (2020). A macroscopic traffic model based on transition velocities. Journal of Computational Science, 43, 101131. doi:10.1016/j.jocs.2020.101131.

Khan, Z. H., Imran, W., Gulliver, T. A., Khattak, K. S., Wadud, Z., & Khan, A. N. (2020). An anisotropic traffic model based on driver interaction. IEEE Access, 8, 66799–66812. doi:10.1109/ACCESS.2020.2985668.

Imran, W., Khan, Z. H., Gulliver, T. A., Khattak, K. S., & Nasir, H. (2020). A macroscopic traffic model for heterogeneous flow. Chinese Journal of Physics, 63, 419–435. doi:10.1016/j.cjph.2019.12.005.

Khan, Z. H., Ali Shah, S. A., & Gulliver, T. A. (2018). A macroscopic traffic model based on weather conditions. Chinese Physics B, 27(7), 70202. doi:10.1088/1674-1056/27/7/070202.

Fosu, G. O., Oduro, F. T., & Caligaris, C. (2021). Multilane analysis of a viscous second-order macroscopic traffic flow model. SN Partial Differential Equations and Applications, 2(1), 7. doi:10.1007/s42985-020-00054-8.

Peng, G., Yang, S., & Zhao, H. (2018). The difference of drivers’ anticipation behaviors in a new macro model of traffic flow and numerical simulation. Physics Letters, Section A: General, Atomic and Solid State Physics, 382(36), 2595–2597. doi:10.1016/j.physleta.2018.06.039.

Khan, Z. H., Gulliver, T. A., Azam, K., & Khattak, K. S. (2019). Macroscopic model on driver physiological and psychological behavior at changes in Traffic. Journal of Engineering and Applied Sciences, 38(2), 57–66. doi:10.25211/jeas.v38i2.3150.

Khan, Z. H., & Gulliver, T. A. (2018). A macroscopic traffic model for traffic flow harmonization. European Transport Research Review, 10(2), 30. doi:10.1186/s12544-018-0291-y.

Muralidharan, A. (2012). Tools for Modeling and Control of Freeway Networks. PhD Thesis, University of California, Berkeley, USA. Available online: https://digitalassets.lib.berkeley.edu/etd/ucb/text/Muralidharan_berkeley_0028E_12773.pdf (Accessed on March 2021).

Greenshields, B. D., Bibbins, J. R., Channing, W. S., & Miller, H. H. (1935). A study of traffic capacity. In Highway research board proceedings (Vol. 1935). National Research Council (USA), Highway Research Board.

Zheng, Y. Z., & Ge, H. X. (2016). Optimal velocity model with consideration of the lateral effect and its feedback control research. International Journal of Control, 89(6), 1152–1158. doi:10.1080/00207179.2015.1123297.

Basak, K., Hetu, S. N., Li, Z., Azevedo, C. L., Loganathan, H., Toledo, T., Xu, R., Xu, Y., Peh, L. S., & Ben-Akiva, M. (2013). Modeling reaction time within a traffic simulation model. IEEE Conference on Intelligent Transportation Systems, Proceedings, 302–309. doi:10.1109/ITSC.2013.6728249.

LeVeque, R. J. (1990). Numerical Methods for Conservation Laws. Lectures in Mathematics, ETH Zürich, Birkhäuser Verlag, Basel, Switzerland. doi:10.1007/978-3-0348-5116-9

Roe, P. L. (1981). Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43(2), 357–372. doi:10.1016/0021-9991(81)90128-5.

Kermani, M., & Plett, E. (2001). Modified entropy correction formula for the Roe scheme. In Aerospace Sciences Meeting and Exhibit (p. 83). doi:10.2514/6.2001-83.

Lighthill, M. J., & Whitham, J. B. (1955). On kinematic waves II. A theory of traffic flow on long crowded roads. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 229(1178), 317–345. doi:10.1098/rspa.1955.0089.

Morgan, J. V. (2002). Numerical Methods for Macroscopic Traffic Models. PhD Thesis, Department of Mathematics, University of Reading, Berkshire, United Kingdom. Available online: http://www.reading.ac.uk/web/files/maths/Jv_morgan.pdf (accessed on January 2021).


Full Text: PDF

DOI: 10.28991/CEJ-SP2021-07-03

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Zawar Hussain Khan, T. Aaron Gulliver, Khurram S. Khattak

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message