Susceptibility Assessment of Single Gully Debris Flow Based on AHP and Extension Method

Qaiser Mehmood, Wang Qing, Jianping Chen, Jianhua Yan, Muhammad Ammar, Gohar Rahman, Nasrullah .

Abstract


Debris flow mainly happens in mountainous areas all around the world with deadly social and economic impacts. With the speedy development of the mountainous economy, the debris flow susceptibility evaluation in the mountainous areas is of crucial importance for the safety of mountainous life and economy. Yunnan province of China is one of the worst hitting areas by debris flow in the world. In this paper, debris flow susceptibility assessment of Datong and Taicun gully near the first bend of Jinsha River has been done with the help of site investigation and GIS and remote sensing techniques. Eight causative factors, including slope, topographic wetness index, sediments transport index, ground roughness, basin area, bending coefficient, source material, and normalised difference vegetation index, have been selected for debris flow susceptibility evaluation. Analytical hierarchy process combined with Extension method has been used to calculate the susceptibility level of Datong and Taicun gullies. The evaluation result shows that both the gullies have a moderate susceptibility to debris flow. The result suggests that all the ongoing engineering projects such as mining and road construction work should be done with all precautionary measures, and the excavated material should adequately store in the gullies.

 

Doi: 10.28991/cej-2021-03091702

Full Text: PDF


Keywords


Geological Disaster; Debris Flow Susceptibility; GIS and Remote Sensing; AHP; Extension Method.

References


McGregor, Duncan. “Mountain Environments: An Examination of the Physical Geography of Mountains. J. Gerrard. Belhaven Press, London, 1990. ISBN 1 85293 049 7, (July 1990): Vii + 317. doi:10.1002/ldr.3400020311.

Costa, John E., and P. Jay Fleisher, eds. “Developments and Applications of Geomorphology” in Developments and applications of geomorphology, Springer (1984): 268–317. doi:10.1007/978-3-642-69759-3.

Hewitt, Kenneth. "Geomorphic hazards in mountain environments." Mountain Geomorphology (2004): 187-218. doi:10.4324/9780203764824.

Takahashi, Tamotsu. “Debris flow: mechanics, prediction and countermeasures.” Taylor & Francis, (May 3, 2007). doi:10.1201/9780203946282.

Zohair, Muhammad, Dildar Ali Mangnejo, and Naeem Mangi. “Analysis for Stabilization of Soil Slope in Silty Soil with Replacement of Soil Cement.” Civil Engineering Journal 5, no. 10 (October 21, 2019): 2233–2246. doi:10.28991/cej-2019-03091407.

Bobrowsky, Peter, and Lynn Highland. “The Landslide Handbook-a Guide to Understanding Landslides: A Landmark Publication for Landslide Education and Preparedness.” Landslides: Global Risk Preparedness (August 31, 2012): 75–84. doi:10.1007/978-3-642-22087-6_5.

Lorenzini, Giulio, and Natascia Mazza, “Debris flow: Phenomenology and rheological modelling.” Wit Press, (2004).

Iverson, Richard M., Mark E. Reid, Matthew Logan, Richard G. LaHusen, Jonathan W. Godt, and Julia P. Griswold. “Positive Feedback and Momentum Growth during Debris-Flow Entrainment of Wet Bed Sediment.” Nature Geoscience 4, no. 2 (December 19, 2010): 116–121. doi:10.1038/ngeo1040.

Carrara, A., M. Cardinali, R. Detti, F. Guzzetti, V. Pasqui, and P. Reichenbach. “GIS Techniques and Statistical Models in Evaluating Landslide Hazard.” Earth Surface Processes and Landforms 16, no. 5 (August 1991): 427–445. doi:10.1002/esp.3290160505.

Holec, Juraj, Martin Bednarik, Marián Šabo, Jozef Minár, Isik Yilmaz, and Marián Marschalko. “A Small-Scale Landslide Susceptibility Assessment for the Territory of Western Carpathians.” Natural Hazards 69, no. 1 (June 7, 2013): 1081–1107. doi:10.1007/s11069-013-0751-6.

Elkadiri, Racha, Mohamed Sultan, Ahmed M. Youssef, Tamer Elbayoumi, Ronald Chase, Ali B. Bulkhi, and Mohamed M. Al-Katheeri. “A Remote Sensing-Based Approach for Debris-Flow Susceptibility Assessment Using Artificial Neural Networks and Logistic Regression Modeling.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7, no. 12 (December 2014): 4818–4835. doi:10.1109/jstars.2014.2337273.

Chen, Xingzhang, Hui Chen, Yong You, and Jinfeng Liu. “Susceptibility Assessment of Debris Flows Using the Analytic Hierarchy Process Method − A Case Study in Subao River Valley, China.” Journal of Rock Mechanics and Geotechnical Engineering 7, no. 4 (August 2015): 404–410. doi:10.1016/j.jrmge.2015.04.003.

Zhang, Wen, Jian-ping Chen, Qing Wang, Yuke An, Xin Qian, Liangjun Xiang, and Longxiang He. “Susceptibility Analysis of Large-Scale Debris Flows Based on Combination Weighting and Extension Methods.” Natural Hazards 66, no. 2 (December 29, 2012): 1073–1100. doi:10.1007/s11069-012-0539-0.

Yalcin, Ali. “GIS-Based Landslide Susceptibility Mapping Using Analytical Hierarchy Process and Bivariate Statistics in Ardesen (Turkey): Comparisons of Results and Confirmations.” CATENA 72, no. 1 (January 2008): 1–12. doi:10.1016/j.catena.2007.01.003.

Qin, Shengwu, Jiangfeng Lv, Chen Cao, Zhongjun Ma, Xiuyu Hu, Fei Liu, Shuangshuang Qiao, and Qiang Dou. “Mapping Debris Flow Susceptibility Based on Watershed Unit and Grid Cell Unit: a Comparison Study.” Geomatics, Natural Hazards and Risk 10, no. 1 (January 1, 2019): 1648–1666. doi:10.1080/19475705.2019.1604572.

Khan, Hawas, Muhammad Shafique, Muhammad A. Khan, Mian A. Bacha, Safeer U. Shah, and Chiara Calligaris. “Landslide Susceptibility Assessment Using Frequency Ratio, a Case Study of Northern Pakistan.” The Egyptian Journal of Remote Sensing and Space Science 22, no. 1 (April 2019): 11–24. doi:10.1016/j.ejrs.2018.03.004.

Meyer, Nele Kristin, Wolfgang Schwanghart, Oliver Korup, Bård Romstad, and Bernd Etzelmüller. “Estimating the Topographic Predictability of Debris Flows.” Geomorphology 207 (February 2014): 114–125. doi:10.1016/j.geomorph.2013.10.030.

Fan, Wen, Xin-sheng Wei, Yan-bo Cao, and Bin Zheng. “Landslide Susceptibility Assessment Using the Certainty Factor and Analytic Hierarchy Process.” Journal of Mountain Science 14, no. 5 (May 2017): 906–925. doi:10.1007/s11629-016-4068-2.

Li, Yongchao, Jianping Chen, Yiwei Zhang, Shengyuan Song, Xudong Han, and Muhammad Ammar. “Debris Flow Susceptibility Assessment and Runout Prediction: A Case Study in Shiyang Gully, Beijing, China.” International Journal of Environmental Research 14, no. 3 (May 5, 2020): 365–383. doi:10.1007/s41742-020-00263-4.

Wu, Saier, Jian Chen, Chong Xu, Wendy Zhou, Leihua Yao, Wen Yue, and Zhijiu Cui. “Susceptibility Assessments and Validations of Debris-Flow Events in Meizoseismal Areas: Case Study in China’s Longxi River Watershed.” Natural Hazards Review 21, no. 1 (February 2020): 05019005. doi:10.1061/(asce)nh.1527-6996.0000347.

MY, Esper Angillieri. "Debris flow susceptibility mapping in a portion of the Andes and Preandes of San Juan, Argentina using frequency ratio and logistic regression models." Earth Sciences Research Journal 17, no. 2 (2013): 159-167.

Di, Baofeng, Hanyue Zhang, Yongyao Liu, Jierui Li, Ningsheng Chen, Constantine A. Stamatopoulos, Yuzhou Luo, and Yu Zhan. “Assessing Susceptibility of Debris Flow in Southwest China Using Gradient Boosting Machine.” Scientific Reports 9, no. 1 (August 29, 2019): 1-12. doi:10.1038/s41598-019-48986-5.

Holec, Juraj, Martin Bednarik, Pavel Liščák, Andrej Žilka, and Ladislav Vitovič. "Assessment of debris flow susceptibility using bivariate and multivariate statistical analyses and verification based on cataastrophic events from 2014 in the Krivánska Fatra Mountains, Slovakia." Acta Geologica Slovaca 10, (2018): 1-19.

Liang, Zhu, Changming Wang, Songling Han, Kaleem Ullah Jan Khan, and Yiao Liu. “Classification and Susceptibility Assessment of Debris Flow Based on a Semi-Quantitative Method Combination of the Fuzzy <i>C</i>-Means Algorithm, Factor Analysis and Efficacy Coefficient.” Natural Hazards and Earth System Sciences 20, no. 5 (May 14, 2020): 1287–1304. doi:10.5194/nhess-20-1287-2020.

Li, Yanyan, Honggang Wang, Jianping Chen, and Yanjun Shang. “Debris Flow Susceptibility Assessment in the Wudongde Dam Area, China Based on Rock Engineering System and Fuzzy C-Means Algorithm.” Water 9, no. 9 (September 4, 2017): 669. doi:10.3390/w9090669.

Chen, Jian, Yan Li, Wendy Zhou, Javed Iqbal, and Zhijiu Cui. “Debris-Flow Susceptibility Assessment Model and Its Application in Semiarid Mountainous Areas of the Southeastern Tibetan Plateau.” Natural Hazards Review 18, no. 2 (May 2017): 05016005. doi:10.1061/(asce)nh.1527-6996.0000229.

Xu, Wenbo, Wenjuan Yu, Shaocai Jing, Guoping Zhang, and Jianxi Huang. “Debris Flow Susceptibility Assessment by GIS and Information Value Model in a Large-Scale Region, Sichuan Province (China).” Natural Hazards 65, no. 3 (September 28, 2012): 1379–1392. doi:10.1007/s11069-012-0414-z.

Nefeslioglu, H.A., E.A. Sezer, C. Gokceoglu, and Z. Ayas. “A Modified Analytical Hierarchy Process (M-AHP) Approach for Decision Support Systems in Natural Hazard Assessments.” Computers & Geosciences 59 (September 2013): 1–8. doi:10.1016/j.cageo.2013.05.010.

Yang, Qilin, Jiarong Gao, Yue Wang, and Bintian Qian. “Debris Flow Characteristics and Risk Degree Assessment in Changyuan Gully, Huairou District, Beijing.” Procedia Earth and Planetary Science 2 (2011): 262–271. doi:10.1016/j.proeps.2011.09.042.

MChang, Ming, Yang Liu, Chao Zhou, and Hongxiao Che. “Hazard Assessment of a Catastrophic Mine Waste Debris Flow of Hou Gully, Shimian, China.” Engineering Geology 275 (September 2020): 105733. doi:10.1016/j.enggeo.2020.105733.

Zhang, Guifang, Yixi Cai, Zhuo Zheng, Junwei Zhen, Yongli Liu, and Kangyou Huang. “Integration of the Statistical Index Method and the Analytic Hierarchy Process Technique for the Assessment of Landslide Susceptibility in Huizhou, China.” CATENA 142 (July 2016): 233–244. doi:10.1016/j.catena.2016.03.028.

Ni, Huayong, Wanmo Zheng, Xilin Liu, and Yanchao Gao. “Fractal-Statistical Analysis of Grain-Size Distributions of Debris-Flow Deposits and Its Geological Implications.” Landslides 8, no. 2 (August 18, 2010): 253–259. doi:10.1007/s10346-010-0240-x.

Clague, John J., and Douglas Stead, “Landslides: types, mechanisms and modeling.” Cambridge University Press, (2012).

Weng, Cheng-Hsueh, Ming-Lang Lin, Chia-Ming Lo, and Hsi-Hung Lin. “The Influence of Groundwater on the Sliding and Deposition Behaviors of Cataclinal Slopes.” Water 10, no. 9 (September 3, 2018): 1179. doi:10.3390/w10091179.

Saaty, Thomas L. “What Is the Analytic Hierarchy Process?” Mathematical Models for Decision Support (1988): 109–121. doi:10.1007/978-3-642-83555-1_5.

Saaty, Thomas L. "Decision making with the analytic hierarchy process." International journal of services sciences 1, no. 1 (2008): 83-98. doi:10.1504/IJSSci.2008.01759.

Bunruamkaew, Khwanruthai. "How to do AHP analysis in Excel." University of Tsukuba, Graduate School of Life and Environmental Sciences, Division of Spatial Information Science (2012).

Kolat, Cagil, Resat Ulusay, and M. Lutfi Suzen. “Development of Geotechnical Microzonation Model for Yenisehir (Bursa, Turkey) Located at a Seismically Active Region.” Engineering Geology 127 (February 2012): 36–53. doi:10.1016/j.enggeo.2011.12.014.

Malczewski, Jacek. “GIS and multicriteria decision analysis.” John Wiley & Sons, (1999).

Cai, Wen. "The extension set and incompatibility problem." Journal of Scientific Exploration 1 (1983): 81-93.

Wang, Meng-Hui, Yi-Feng Tseng, Hung-Cheng Chen, and Kuei-Hsiang Chao. “A Novel Clustering Algorithm Based on the Extension Theory and Genetic Algorithm.” Expert Systems with Applications 36, no. 4 (May 2009): 8269–8276. doi:10.1016/j.eswa.2008.10.010.

Ye, Jun. “Application of Extension Theory in Misfire Fault Diagnosis of Gasoline Engines.” Expert Systems with Applications 36, no. 2 (March 2009): 1217–1221. doi:10.1016/j.eswa.2007.11.012.

Zhang, Wen, Hui-Zhong Li, Jian-ping Chen, Chen Zhang, Li-ming Xu, and Wei-feng Sang. “Comprehensive Hazard Assessment and Protection of Debris Flows Along Jinsha River Close to the Wudongde Dam Site in China.” Natural Hazards 58, no. 1 (December 14, 2010): 459–477. doi:10.1007/s11069-010-9680-9.

Xiao, Ting, Kunlong Yin, Tianlu Yao, and Shuhao Liu. “Spatial Prediction of Landslide Susceptibility Using GIS-Based Statistical and Machine Learning Models in Wanzhou County, Three Gorges Reservoir, China.” Acta Geochimica 38, no. 5 (April 22, 2019): 654–669. doi:10.1007/s11631-019-00341-1.

Li, Yongchao, Jianping Chen, Chun Tan, Yang Li, Feifan Gu, Yiwei Zhang, and Qaiser Mehmood. “Application of the Borderline-SMOTE Method in Susceptibility Assessments of Debris Flows in Pinggu District, Beijing, China.” Natural Hazards 105, no. 3 (November 2, 2020): 2499–2522. doi:10.1007/s11069-020-04409-7.

Seibert, J. A. N., Kevin H. Bishop, and Lars Nyberg. "A test of TOPMODEL'a ability to predict spatially distributed groundwater levels." Hydrological processes 11, no. 9 (1997): 1131-1144.

Zinko, Ursula, Jan Seibert, Mats Dynesius, and Christer Nilsson. "Plant species numbers predicted by a topography-based groundwater flow index." Ecosystems 8, no. 4 (2005): 430-441. doi:10.1007/PL00021513.

Beven, Keith J., and Michael J. Kirkby. "A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant." Hydrological Sciences Journal 24, no. 1 (1979): 43-69. doi:10.1080/02626667909491834.

Moore, I. D., R. B. Grayson, and A. R. Ladson. “Digital Terrain Modelling: A Review of Hydrological, Geomorphological, and Biological Applications.” Hydrological Processes 5, no. 1 (January 1991): 3–30. doi:10.1002/hyp.3360050103.

Mark, David M. “Geomorphometric Parameters: A Review and Evaluation.” Geografiska Annaler: Series A, Physical Geography 57, no. 3–4 (October 1975): 165–177. doi:10.1080/04353676.1975.11879913.

Conforti, Massimo, Stefania Pascale, Gaetano Robustelli, and Francesco Sdao. “Evaluation of Prediction Capability of the Artificial Neural Networks for Mapping Landslide Susceptibility in the Turbolo River Catchment (northern Calabria, Italy).” CATENA 113 (February 2014): 236–250. doi:10.1016/j.catena.2013.08.006.

Ayalew, Lulseged, and Hiromitsu Yamagishi. “The Application of GIS-Based Logistic Regression for Landslide Susceptibility Mapping in the Kakuda-Yahiko Mountains, Central Japan.” Geomorphology 65, no. 1–2 (February 2005): 15–31. doi:10.1016/j.geomorph.2004.06.010.

Wu, Yanli, Wenping Li, Qiqing Wang, Qiangqiang Liu, Dongdong Yang, Maolin Xing, Yabing Pei, and Shishun Yan. “Landslide Susceptibility Assessment Using Frequency Ratio, Statistical Index and Certainty Factor Models for the Gangu County, China.” Arabian Journal of Geosciences 9, no. 2 (January 25, 2016). doi:10.1007/s12517-015-2112-0.

García-Rodríguez, M.J., J.A. Malpica, B. Benito, and M. Díaz. “Susceptibility Assessment of Earthquake-Triggered Landslides in El Salvador Using Logistic Regression.” Geomorphology 95, no. 3–4 (March 2008): 172–191. doi:10.1016/j.geomorph.2007.06.001.

Meng, F. Q., G. J. Li, Ming Li, J. Q. Ma, and Qian Wang. "Application of stepwise discriminant analysis to screening evaluation factors of debris flow." Rock and Soil Mechanics 31, no. 9 (2010): 2925-2929.

Lay, Usman Salihu, Biswajeet Pradhan, Zainuddin Bin Md Yusoff, Ahmad Fikri Bin Abdallah, Jagannath Aryal, and Hyuck-Jin Park. “Data Mining and Statistical Approaches in Debris-Flow Susceptibility Modelling Using Airborne LiDAR Data.” Sensors 19, no. 16 (August 7, 2019): 3451. doi:10.3390/s19163451.

Shi, Mingyuan, Jianping Chen, Yang Song, Wen Zhang, Shengyuan Song, and Xudong Zhang. “Assessing Debris Flow Susceptibility in Heshigten Banner, Inner Mongolia, China, Using Principal Component Analysis and an Improved Fuzzy C-Means Algorithm.” Bulletin of Engineering Geology and the Environment 75, no. 3 (August 28, 2015): 909–922. doi:10.1007/s10064-015-0784-z.

Kang, Sinhang, Seung-Rae Lee, Nikhil N. Vasu, Joon-Young Park, and Deuk-Hwan Lee. “Development of an Initiation Criterion for Debris Flows Based on Local Topographic Properties and Applicability Assessment at a Regional Scale.” Engineering Geology 230 (November 2017): 64–76. doi:10.1016/j.enggeo.2017.09.017.

Liu, Chia-Nan, Jia-Jyun Dong, Yih-Ferng Peng, and Hsiao-Fung Huang. “Effects of Strong Ground Motion on the Susceptibility of Gully Type Debris Flows.” Engineering Geology 104, no. 3–4 (March 2009): 241–253. doi:10.1016/j.enggeo.2008.10.012.

Niu, Cen-Cen, Qing Wang, Jian-Ping Chen, Ke Wang, Wen Zhang, and Fu-Jun Zhou. “Debris-Flow Hazard Assessment Based on Stepwise Discriminant Analysis and Extension Theory.” Quarterly Journal of Engineering Geology and Hydrogeology 47, no. 3 (June 30, 2014): 211–222. doi:10.1144/qjegh2013-038.

Hungr, Oldrich. “Some Methods of Landslide Hazard Intensity Mapping.” Landslide Risk Assessment (May 2, 2018): 215–226. doi:10.1201/9780203749524-12.

Conoscenti, Christian, Cipriano Di Maggio, and Edoardo Rotigliano. “GIS Analysis to Assess Landslide Susceptibility in a Fluvial Basin of NW Sicily (Italy).” Geomorphology 94, no. 3–4 (February 2008): 325–339. doi:10.1016/j.geomorph.2006.10.039.

Chen, Chien-Yuan, and Fan-Chieh Yu. “Morphometric Analysis of Debris Flows and Their Source Areas Using GIS.” Geomorphology 129, no. 3–4 (June 2011): 387–397. doi:10.1016/j.geomorph.2011.03.002.

Wischmeier, Walter H., and Dwight David Smith. “Predicting rainfall erosion losses: a guide to conservation planning.” No. 537. Department of Agriculture, Science and Education Administration, (1978).

P. Lüscher, M. Frehner, R. Weibel, E. Lorup, and J. Fisler, “Terrain Analysis (Intermediate),” (2016).

Duo, T., Y. Wang, Z. Huang, and T. Duo. "A fuzzy math evaluation on debris-flow occurrence in the three main gullies in Chayuangou Alley." J. Geol. Hazards Environ. Preserv 22 (2011): 31-35.


Full Text: PDF

DOI: 10.28991/cej-2021-03091702

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Qaiser Mehmood, Wang Qing, Jianping Chen, Jianhua Yan, Muhammad Ammar, Gohar Rehman, Nasrullah .

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message