Shear Strength and Serviceability of GFRP-Reinforced Concrete Beams: A Study on Varying Reinforcement Ratios

Thar Mohammed Hamed, AbdulMuttalib I. Said

Abstract


This study investigates the behavior of GFRP-reinforced concrete beams with varying reinforcement ratios. The experimental program consists of five concrete beams tested under a simply supported four-point bending setup with a section of (250×300) mm and a clear span of 1800 mm with a span-to-depth ratio of 2.3. The beams were reinforced longitudinally with GFRP bars with varying reinforcement ratios (ρ = 0.5, 0.9, 1.35, 1.8, and 2.25) for B1-B5, respectively. GFRP stirrups were used for the transverse direction with a spacing of 240 mm for all the beams. The results showed that raising the GFRP longitudinal reinforcement ratio to 1.35 enhanced load-carrying capacity performance and dropped at higher reinforcement ratios (1.8, 2.25) while offering better performance in controlling crack widths and deflection, which could be due to the limit of bonding with concrete. Increasing the GFRP longitudinal reinforcement ratio reduced the deflection at both service and ultimate loads with enhanced crack control. Lower reinforcement ratios of (ρ= 0.5) resulted in a brittle failure, wider cracks, and poor stiffness. Conversely, a 1.8 reinforcement ratio led to delayed crack initiation, smaller crack widths, and a balanced stiffness-to-ductility ratio being achieved. It was found that the dowel action of longitudinal GFRP bars greatly contributes to the shear strength of concrete beams, with a ratio of (ρ= 1.35) having the maximum load capacity along the tested beams. The ductility index ranged from 1.7 to 2.49. Higher reinforcement ratio beams resulted in a deeper neutral axis up to (ρ = 1.35), demonstrating improved stress distribution and reduced deformations.

 

Doi: 10.28991/CEJ-2025-011-03-04

Full Text: PDF


Keywords


GFRP; Shear Strength; Dowel Action; Serviceability; Crack Width; DIC; Deflection.

References


Benmokrane, B., Wang, P., Ton-That, T. M., Rahman, H., & Robert, J.-F. (2002). Durability of Glass Fiber-Reinforced Polymer Reinforcing Bars in Concrete Environment. Journal of Composites for Construction, 6(3), 143–153. doi:10.1061/(asce)1090-0268(2002)6:3(143).

Mohammed, S. A., & Said, A. M. I. (2024). Concrete beams reinforced with longitudinal and transverse GFRP bars. Magazine of Civil Engineering, 17(5), 1-4. doi:10.34910/MCE.129.8.

ACI 440.1R-15. (2015). Guide for the Design and Construction of Concrete Reinforced with FRP Bars. American Concrete Institute (ACI), Michigan, United States.

Kodsy, A. (2019). Bond Performance of Sanded Surface and Threaded Smooth GFRP Bars. Civil Engineering Research Journal, 8(4). doi:10.19080/cerj.2019.08.555743.

Said, A. M. I., Hilfi, H. A., Allawi, A. A., & Wardeh, G. (2024). Structural Performance of a Hollow-Core Square Concrete Column Longitudinally Reinforced with GFRP Bars under Concentric Load. CivilEng, 5(4), 928–948. doi:10.3390/civileng5040047.

Hussein, H. A., & Said, A. M. I. (2023). Finite Element Analysis of Axially Loaded GFRP-Reinforced Concrete Hollow Square Columns. E3S Web of Conferences, 427, 2023. doi:10.1051/e3sconf/202342702023.

Nassif, N., Talha Junaid, M., Maalej, M., Altoubat, S., & Barakat, S. A. (2024). Durability of Fiber-Reinforced Polymer (FRP) Bars: Progress, Innovations and Challenges Based on Bibliometric Analysis. Civil Engineering Journal (Iran), 10, 136–173. doi:10.28991/CEJ-SP2024-010-09.

Hussein, H. A., & Said, A. I. (2024). Experimental Investigation of GFRP-Reinforced Hollow Square Concrete Column. Journal of Engineering, 30(06), 108–124. doi:10.31026/j.eng.2024.06.07.

Golham, M. A., & Al-Ahmed, A. H. A. (2024). Strengthening of GFRP Reinforced Concrete Slabs with Openings. Journal of Engineering, 30(01), 157–172. doi:10.31026/j.eng.2024.01.10.

Ibrahim, T. H., & Allawi, A. A. (2023). The Response of Reinforced Concrete Composite Beams Reinforced with Pultruded GFRP to Repeated Loads. Journal of Engineering, 29(1), 158–174. doi:10.31026/j.eng.2023.01.10.

Wegian, F. M., & Abdalla, H. A. (2005). Shear capacity of concrete beams reinforced with fiber reinforced polymers. Composite Structures, 71(1), 130–138. doi:10.1016/j.compstruct.2004.10.001.

Ashour, A. F. (2006). Flexural and shear capacities of concrete beams reinforced with GFRP bars. Construction and Building Materials, 20(10), 1005–1015. doi:10.1016/j.conbuildmat.2005.06.023.

Tavares, D. H., Giongo, J. S., & Paultre, P. (2008). Behavior of reinforced concrete beams reinforced with GFRP bars. Revista IBRACON de Estruturas e Materiais, 1(3), 285–295. doi:10.1590/s1983-41952008000300004.

Nguyen-Minh, L., & Rovňák, M. (2011). Shear resistance of GFRP-reinforced concrete beams. Magazine of Concrete Research, 63(3), 215–233. doi:10.1680/macr.9.00182.

Kalpana, V. G., & Subramanian, K. (2011). Behavior of concrete beams reinforced with GFRP BARS. Journal of Reinforced Plastics and Composites, 30(23), 1915–1922. doi:10.1177/0731684411431119.

Maranan, G. B., Manalo, A. C., Karunasena, W. M., Benmokrane, B., & Mendis, P. A. (2015). Comparison of the shear behaviour of geopolymer concrete beams with GFRP and steel transverse reinforcements. Proceedings, Joint Conference of the 12th International Symposium on Fiber Reinforced Polymers for Reinforced Concrete Structures (FRPRCS-12) & the 5th Asia-Pacific Conference on Fiber Reinforced Polymers in Structures (APFIS-2015), 14-16 December, Nanjing, China.

Said, M., Adam, M. A., Mahmoud, A. A., & Shanour, A. S. (2016). Experimental and analytical shear evaluation of concrete beams reinforced with glass fiber reinforced polymers bars. Construction and Building Materials, 102, 574–591. doi:10.1016/j.conbuildmat.2015.10.185.

Kaszubska, M., Kotynia, R., & Barros, J. A. O. (2017). Influence of Longitudinal GFRP Reinforcement Ratio on Shear Capacity of Concrete Beams without Stirrups. Procedia Engineering, 193, 361–368. doi:10.1016/j.proeng.2017.06.225.

Krasniqi, C., Kabashi, N., Krasniqi, E., & Kaqi, V. (2018). Comparison of the behavior of GFRP reinforced concrete beams with conventional steel bars. Pollack Periodica, 13(3), 141–150. doi:10.1556/606.2018.13.3.14.

Menam, A., Kumar, K. S., & Rupa, P. (2021). Flexural and Shear Behavior of Beams Reinforced with GFRP Rebars. International Journal of Recent Technology and Engineering (IJRTE), 9(5), 229–235. doi:10.35940/ijrte.e5191.019521.

Moawad, M. S., & Fawzi, A. (2021). Performance of concrete beams partially/fully reinforced with glass fiber polymer bars. Journal of Engineering and Applied Science, 68(1), 38. doi:10.1186/s44147-021-00028-6.

Yuan, Y., Wang, Z., & Wang, D. (2022). Shear behavior of concrete beams reinforced with closed-type winding glass fiber-reinforced polymer stirrups. Advances in Structural Engineering, 25(12), 2577–2589. doi:10.1177/13694332221104280.

Ali, H. H., & Said, A. I. (2023). Experimental Study on the Performance of Concrete Beams Including Holes Reinforced with Glass Fiber Polymer. E3S Web of Conferences, 427. doi:10.1051/e3sconf/202342702010.

Ali, H. H., & Said, A. M. I. (2022). Flexural behavior of concrete beams with horizontal and vertical openings reinforced by glass-fiber-reinforced polymer (GFRP) bars. Journal of the Mechanical Behavior of Materials, 31(1), 407–415. doi:10.1515/jmbm-2022-0045.

Abdulmuttalib Issa, M. A., Allawi, A. A., & Oukaili, N. (2024). Effects of GFRP Stirrup Spacing on the Behavior of Doubly GFRP-Reinforced Concrete Beams. Civil Engineering Journal (Iran), 10(2), 502–520. doi:10.28991/CEJ-2024-010-02-011.

Abdulmuttalib Issa, M., Allawi, A. A., & Oukaili, N. (2024). Performance of doubly reinforced concrete beams with GFRP bars. Journal of the Mechanical Behavior of Materials, 33(1), 20220308. doi:10.1515/jmbm-2022-0308.

Mohammed, S. A., & Said, A. I. (2024). A Comparative Study of the Structural Behavior of Concrete Beams Reinforced with Different Configurations of GFRP and Steel Bars. Journal of Engineering, 30(4), 200–218. doi:10.31026/j.eng.2024.04.12.

Mohammed, S. A., & Said, A. M. I. (2022). Analysis of concrete beams reinforced by GFRP bars with varying parameters. Journal of the Mechanical Behavior of Materials, 31(1), 767–774. doi:10.1515/jmbm-2022-0068.

Rasheed, M. R., & Mohammed, S. D. (2024). Structural behavior of one-way slabs reinforced by a combination of GFRP and steel bars: An experimental and numerical investigation. Journal of the Mechanical Behavior of Materials, 33(1), 1–22. doi:10.1515/jmbm-2024-0002.

Zhao, J., Bao, X., Yang, S., Wang, Z., He, H., & Xu, X. (2024). Experimental and Theoretical Studies on the Shear Performance of Concrete Beams Reinforced with Fiber-Reinforced Polymer Stirrups. Materials, 17(3), 593. doi:10.3390/ma17030593.

ACI 440.11-22. (2023). Building Code Requirements for Structural Concrete Reinforced with Glass Fiber-Reinforced Polymer (GFRP) Bars. American Concrete Institute (ACI), Michigan, United States.

ACI 318-19. (2019). Building Code Requirements for Structural Concrete. American Concrete Institute (ACI), Michigan, United States.

Reu, P. (2014). All about speckles: Speckle size measurement. Experimental Techniques, 38(6), 1–2. doi:10.1111/ext.12110.

Jones, E. M. C., & Iadicola, M. A. (2018). A Good Practices Guide for Digital Image Correlation. International Digital Image Correlation Society, iDICs. doi:10.32720/idics/gpg.ed1.

Said, A. I., & Tuma, N. H. (2021). Numerical Modeling for Flexural Behavior of UHPC Beams Reinforced with Steel and Sand-Coated CFRP Bars. IOP Conference Series: Earth and Environmental Science, 856(1), 12003. doi:10.1088/1755-1315/856/1/012003.

Said, A. M. I., & Abbas, O. M. (2015). Evaluation of deflection in high strength concrete (HSC) I-beam reinforced with carbon fiber reinforced polymer (CFRP) bars. The 7th Asia Pacific Young Researchers and Graduates Symposium, 20-21 August, Kuala Lumpur, Malaysia.

BS EN 197-1:2011. (2011). Cement – Composition, Specifications and Conformity Criteria for Common Cements. British Standard (BSI), London, United Kingdom.

ASTM C33/C33M-18. (2023). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.

ASTM C31/C31M-21a. (2022). Standard Practice for Making and Curing Concrete Test Specimens in the Field. ASTM International, Pennsylvania, United States. doi:10.1520/C0031_C0031M-21A.

ASTM C39/C39M-21. (2003). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039M-21.

BS EN 12390-2:2019. Testing hardened concrete. Making and curing specimens for strength tests. British Standard (BSI), London, United Kingdom.

BS EN 12390-3. (2002). Testing Hardened Concrete – Part 3: Compressive Strength of Test Specimens. British Standard (BSI), London, United Kingdom.

ASTM C496/C496M-17. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0496_C0496M-17.

ASTM C469/C469M-22. (2002). Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression. ASTM International, Pennsylvania, United States. doi:10.1520/C0469_C0469M-22.

BS EN 12390-5:2009. (2009). Testing Hardened Concrete – Part 5: Flexural Strength of Test Specimens. British Standard (BSI), London, United Kingdom.

ASTM D7205/D7205M. (2011). Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars. ASTM International, Pennsylvania, United States. doi:10.1520/D7205_D7205M-06.

Ali, S. I., & Allawi, A. A. (2021). Effect of Web Stiffeners on The Flexural Behavior of Composite GFRP- Concrete ‎Beam Under Impact Load. Journal of Engineering, 27(3), 76–92. doi:10.31026/j.eng.2021.03.06.

Said, A. I., & Abbas, O. M. (2023). Serviceability behavior of High Strength Concrete I-beams reinforced with Carbon Fiber Reinforced Polymer bars. Journal of Engineering, 19(11), 1515–1530. doi:10.31026/j.eng.2013.11.10.

Tu, J., Zhao, Q., & Gao, K. (2022). The Design of Concrete Beams Reinforced with GFRP Bars Based on Crack Width. Materials, 15(18), 6467. doi:10.3390/ma15186467.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-03-04

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Thar Mohammed Hamed, AbdulMuttalib Issa Said

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message