Fire Behavior of Concrete Beams Reinforced with Various Combinations of GFRP and Steel

Det Van Doan, Vui Van Cao

Abstract


This paper investigates the effects of key parameters on the fire resistance of concrete beams reinforced with various combinations of glass fiber-reinforced polymer (GFRP) and steel. The ratio of GFRP area (Af) to the total area (A) of GFRP and steel varied from 0 to 1, making steel, hybrid GFRP-steel, and GFRP-reinforced concrete (RC) beams. Finite element models of these beams were developed in SAFIR software and verified. The models were then used to analyze the effects of different key parameters on the fire behavior and fire resistance of these beams. The results demonstrated that the fire behavior of these beams was significantly affected by the Af/A ratio, load ratio, total reinforcement ratio, and concrete cover thickness, while it was marginally affected by steel and concrete strengths. The fire resistance decreased with the increases in load ratio and Af/A ratio, whereas it increased with the increases in concrete cover thickness or reinforcement ratio. Fire resistance slightly increased with the increase in the tensile strength of steel and slightly decreased with the increase in the compressive strength of concrete. The location arrangement of GFRP and steel bars in cross sections significantly affected the fire behavior and fire resistance of hybrid beams. The deflection rate limit, rather than the deflection limit, decisively governed the fire resistance of concrete beams reinforced with different Af/Aratios. Regression analyses yielded models for estimating the fire resistance.

 

Doi: 10.28991/CEJ-2025-011-05-018

Full Text: PDF


Keywords


GFRP; GFRP-Steel Reinforcement; Reinforced Concrete Beam; Fire; Fire Resistance; SAFIR.

References


Zabihi-Samani, M., Shayanfar, M. A., Safiey, A., & Najari, A. (2018). Simulation of the Behavior of Corrosion Damaged Reinforced Concrete Beams with/without CFRP Retrofit. Civil Engineering Journal, 4(5), 958. doi:10.28991/cej-0309148.

Djamaluddin, R., Irmawaty, R., Fakhruddin, & Yamaguchi, K. (2024). Flexural Behavior of Repaired Reinforced Concrete Beams Due to Corrosion of Steel Reinforcement Using Grouting and FRP Sheet Strengthening. Civil Engineering Journal (Iran), 10(1), 222–233. doi:10.28991/CEJ-2024-010-01-014.

Ge, W., Zhang, J., Cao, D., & Tu, Y. (2015). Flexural behaviors of hybrid concrete beams reinforced with BFRP bars and steel bars. Construction and Building Materials, 87, 28–37. doi:10.1016/j.conbuildmat.2015.03.113.

El Refai, A., Abed, F., & Al-Rahmani, A. (2015). Structural performance and serviceability of concrete beams reinforced with hybrid (GFRP and steel) bars. Construction and Building Materials, 96, 518–529. doi:10.1016/j.conbuildmat.2015.08.063.

Pang, L., Qu, W., Zhu, P., & Xu, J. (2016). Design Propositions for Hybrid FRP-Steel Reinforced Concrete Beams. Journal of Composites for Construction, 20(4), 04015086. doi:10.1061/(asce)cc.1943-5614.0000654.

Qin, R., Zhou, A., & Lau, D. (2017). Effect of reinforcement ratio on the flexural performance of hybrid FRP reinforced concrete beams. Composites Part B: Engineering, 108, 200–209. doi:10.1016/j.compositesb.2016.09.054.

Barris, C., Torres, L., Turon, A., Baena, M., & Catalan, A. (2009). An experimental study of the flexural behaviour of GFRP RC beams and comparison with prediction models. Composite Structures, 91(3), 286–295. doi:10.1016/j.compstruct.2009.05.005.

ACI 440.1R-06. (2005). Guide for the design and construction of concrete reinforced with FRP bars. American Concrete Institute (ACI), Michigan, United States.

EN 1992-1-1. (2004). Eurocode 2: Design of concrete structures - Part 1-1 : General rules and rules for buildings European Committee for Standardization, Brussels, Belgium.

Qu, W., Zhang, X., & Huang, H. (2009). Flexural Behavior of Concrete Beams Reinforced with Hybrid (GFRP and Steel) Bars. Journal of Composites for Construction, 13(5), 350–359. doi:10.1061/(asce)cc.1943-5614.0000035.

Lau, D., & Pam, H. J. (2010). Experimental study of hybrid FRP reinforced concrete beams. Engineering Structures, 32(12), 3857–3865. doi:10.1016/j.engstruct.2010.08.028.

Kara, I. F., Ashour, A. F., & Köroğlu, M. A. (2015). Flexural behavior of hybrid FRP/steel reinforced concrete beams. Composite Structures, 129, 111–121. doi:10.1016/j.compstruct.2015.03.073.

Araba, A. M., & Ashour, A. F. (2018). Flexural performance of hybrid GFRP-Steel reinforced concrete continuous beams. Composites Part B: Engineering, 154, 321–336. doi:10.1016/j.compositesb.2018.08.077.

Duic, J., Kenno, S., & Das, S. (2018). Performance of concrete beams reinforced with basalt fibre composite rebar. Construction and Building Materials, 176, 470–481. doi:10.1016/j.conbuildmat.2018.04.208.

Abbas, H., Abadel, A., Almusallam, T., & Al-Salloum, Y. (2022). Experimental and analytical study of flexural performance of concrete beams reinforced with hybrid of GFRP and steel rebars. Engineering Failure Analysis, 138(106397). doi:10.1016/j.engfailanal.2022.106397.

Yoo, D. Y., Banthia, N., & Yoon, Y. S. (2016). Flexural behavior of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP and steel rebars. Engineering Structures, 111, 246–262. doi:10.1016/j.engstruct.2015.12.003.

Abdalla, H. A. (2002). Evaluation of deflection in concrete members reinforced with fibre reinforced polymer (FRP) bars. Composite Structures, 56(1), 63–71. doi:10.1016/S0263-8223(01)00188-X.

Terzioglu, H., Eryilmaz Yildirim, M., Karagoz, O., Unluoglu, E., & Dogan, M. (2024). Flexural behavior of concrete beams hybrid-reinforced with glass fiber-reinforced polymer, carbon fiber-reinforced polymer, and steel rebars. Advances in Structural Engineering, 27(5), 775–795. doi:10.1177/13694332241232051.

Dang Vu, H., Kawai, K., Dang, V. Q., & Nguyen Phan, D. (2025). The pre-cracked hybrid GFRP-steel RC beams strengthened with CFRP sheet: experiment and strength prediction. European Journal of Environmental and Civil Engineering, 2025, 1–24. doi:10.1080/19648189.2024.2448667.

Adem Yimer, M., & Dey, T. (2024). Dynamic response of concrete beams reinforced with GFRP and steel bars under impact loading. Engineering Failure Analysis, 161(108329). doi:10.1016/j.engfailanal.2024.108329.

Puzach, S., Liubov, L., Кamchatova, E., Nosova, L., Degtyareva, V., Tarasova, V., & Komarova, L. (2024). Development of a Method for Increasing the Fire Resistance of Cast-iron Structures of Cultural Heritage Sites under Reconstruction. Civil Engineering Journal (Iran), 10(2), 555–570. doi:10.28991/CEJ-2024-010-02-015.

Shubbar, H. A., & Alwash, N. A. (2020). The fire exposure effect on hybrid reinforced reactive powder concrete columns. Civil Engineering Journal (Iran), 6(2), 363–374. doi:10.28991/cej-2020-03091476.

Rafi, M. M., & Nadjai, A. (2011). Behavior of hybrid (steel-CFRP) and CFRP bar-reinforced concrete beams in fire. Journal of Composite Materials, 45(15), 1573–1584. doi:10.1177/0021998310385022.

Rafi, M. M., & Nadjai, A. (2013). Numerical modelling of carbon fibre-reinforced polymer and hybrid reinforced concrete beams in fire. Fire and Materials, 37(5), 374–390. doi:10.1002/fam.2135.

Tian, J., Zhu, P., & Qu, W. (2019). Study on fire resistance time of hybrid reinforced concrete beams. Structural Concrete, 20(6), 1941–1954. doi:10.1002/suco.201800320.

Albu-Hassan, N. H., & Al-Thairy, H. (2020). Experimental and numerical investigation on the behavior of hybrid concrete beams reinforced with GFRP bars after exposure to elevated temperature. Structures, 28, 537–551. doi:10.1016/j.istruc.2020.08.079.

Al-Thairy, H. (2020). A simplified method for steady state and transient state thermal analysis of hybrid steel and FRP RC beams at fire. Case Studies in Construction Materials, 13. doi:10.1016/j.cscm.2020.e00465.

Hassan, A., Khairallah, F., Elsayed, H., Salman, A., & Mamdouh, H. (2021). Behaviour of concrete beams reinforced using basalt and steel bars under fire exposure. Engineering Structures, 238, 112251. doi:10.1016/j.engstruct.2021.112251.

Saafi, M. (2002). Effect of fire on FRP reinforced concrete members. Composite Structures, 58(1), 11–20. doi:10.1016/S0263-8223(02)00045-4.

Said, M., Hamdy, H., El-Sayed, A. A., & Khalil, M. M. (2024). Structural efficiency of concrete beams reinforced with hybrid reinforcement bars under thermal loads. Journal of Building Engineering, 92, 109678. doi:10.1016/j.jobe.2024.109678.

Mamdouh, H., Mehany, M., Ibrahim, W. M., Mohamed, H. M., & Ali, A. H. (2024). Concrete contribution to shear resistance of GFRP-RC beams under fire exposure. Case Studies in Construction Materials, 21. doi:10.1016/j.cscm.2024.e04109.

Cao, V. Van, & Nguyen, V. N. (2022). Flexural Performance of Postfire Reinforced Concrete Beams: Experiments and Theoretical Analysis. Journal of Performance of Constructed Facilities, 36(3), 04022029. doi:10.1061/(asce)cf.1943-5509.0001739.

Nigro, E., Bilotta, A., Cefarelli, G., Manfredi, G., & Cosenza, E. (2012). Performance under Fire Situations of Concrete Members Reinforced with FRP Rods: Bond Models and Design Nomograms. Journal of Composites for Construction, 16(4), 395–406. doi:10.1061/(asce)cc.1943-5614.0000279.

Rosa, I. C., Firmo, J. P., Correia, J. R., & Bisby, L. A. (2023). Fire Behavior of GFRP-Reinforced Concrete Structural Members: A State-of-the-Art Review. Journal of Composites for Construction, 27(5), 03123002. doi:10.1061/jccof2.cceng-4268.

Gernay, T., & Franssen, J. M. (2012). A formulation of the Eurocode 2 concrete model at elevated temperature that includes an explicit term for transient creep. Fire Safety Journal, 51, 1–9. doi:10.1016/j.firesaf.2012.02.001.

Song, Y., Fu, C., Liang, S., Yin, A., & Dang, L. (2019). Fire Resistance Investigation of Simple Supported RC Beams with Varying Reinforcement Configurations. Advances in Civil Engineering, 8625360. doi:10.1155/2019/8625360.

Song, Y., Fu, C., Liang, S., Li, D., Dang, L., Sun, C., & Kong, W. (2020). Residual Shear Capacity of Reinforced Concrete Beams after Fire Exposure. KSCE Journal of Civil Engineering, 24(11), 3330–3341. doi:10.1007/s12205-020-1758-7.

GangaRao, H. V. S., Taly, N., & Vijay, P. V. (2006). Reinforced Concrete Design with FRP Composites. CRC Press, Boca Raton, United States. doi:10.1201/9781420020199.

Yu, B., & Kodur, V. K. R. (2013). Factors governing the fire response of concrete beams reinforced with FRP rebars. Composite Structures, 100, 257–269. doi:10.1016/j.compstruct.2012.12.028.

BS EN 1363-1:2020. (2020). TC Fire resistance tests - General requirements. British Standard (BSI), London, United Kingdom.

Park, R., & Paulay, T. (1991). Reinforced concrete structures. John Wiley & Sons, Hoboken, United States.

Kodur, V. K. R. (2004). Spalling in high strength concrete exposed to fire - Concerns, causes, critical parameters and cures. Structures Congress 2000: Advanced Technology in Structural Engineering, 103, 1–9. doi:10.1061/40492(2000)180.

Kodur, V. K. R., & Dwaikat, M. (2007). Performance-based fire safety design of reinforced concrete beams. Journal of Fire Protection Engineering, 17(4), 293–320. doi:10.1177/1042391507077198.

Dwaikat, M. B., & Kodur, V. K. R. (2009). Response of Restrained Concrete Beams under Design Fire Exposure. Journal of Structural Engineering, 135(11), 1408–1417. doi:10.1061/(asce)st.1943-541x.0000058.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-05-018

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Det Van Doan, Vui Van Cao

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message