The Performance of Geosynthetic Reinforcement Road Pavement Over Expansive Soil Subgrade

. Hairulla, Tri Harianto, Abdul Rahman Djamaluddin, Ardy Arsyad

Abstract


One of the problems faced in infrastructure development, especially roads, is problematic soils, including expansive soils, which are distributed around 20% of national road construction in Indonesia. Geosynthetics are reinforcement materials that can be used to overcome problematic soils. The study aimed to determine the behavior of expansive soil with geosynthetic reinforcement against swelling potential and swelling pressure in the wetting cycle. The research utilized an experimental approach involving three test concepts. The first was a control test without reinforcement. The second included a combination of geogrid, geotextile, and geomembrane layers, while the third utilized an H2Rx reinforcement layer. Analysis was carried out on the development potential and pressure; the test was carried out for 57 days using displacement sensors and pressure sensors, and data recording was carried out every 5 seconds using a computer. The findings from the results of this study indicated that the presence of reinforcement using a geosynthetic reinforcement layer can overcome the behavior that occurs in expansive soils with swelling potential and swelling pressure. The novelty of this research is the inclusion of a geosynthetic reinforcement layer on expansive soil combined with a drainage layer in the pavement subgrade.

 

Doi: 10.28991/CEJ-2024-010-12-020

Full Text: PDF


Keywords


Geosynthetics; Expansive Soil; Swelling Potential; Swelling Pressure.

References


Bowles, J, E. (1986). Engineering Properties of Soils and Their Measurement. Singapore: McGraw-Hill, Inc, New York, United States.

Teixeira, S. H. C., Bueno, B. S., & Zornberg, J. G. (2007). Pullout Resistance of Individual Longitudinal and Transverse Geogrid Ribs. Journal of Geotechnical and Geoenvironmental Engineering, 133(1), 37–50. doi:10.1061/(asce)1090-0241(2007)133:1(37).

McCartney, J. S., Kuhn, J. A., & Zornberg, J. G. (2005). Geosynthetic drainage layers in contact with unsaturated soils. Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, 2301 - 2306. doi:10.3233/978-1-61499-656-9-2301.

Li, C., & Zornberg, J. G. (2013). Mobilization of Reinforcement Forces in Fiber-Reinforced Soil. Journal of Geotechnical and Geoenvironmental Engineering, 139(1), 107–115. doi:10.1061/(asce)gt.1943-5606.0000745.

Freilich, B. J., Li, C., & Zornberg, J. G. (2010). Effective shear strength of fiber-reinforced clays. 9th International Conference on Geosynthetics - Geosynthetics: Advanced Solutions for a Challenging World, ICG 2010, 23-27 May, 2010, Guarujá, Brazil.

Zornberg, J. G. (2017). Functions and Applications of Geosynthetics in Roadways. Procedia Engineering, 189, 298–306. doi:10.1016/j.proeng.2017.05.048.

Zornberg, J. G., & Gupta, R. (2009). Reinforcement of pavements over expansive clay subgrades. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering, 1, 765–768. doi:10.3233/978-1-60750-031-5-765.

Liu, C.-N., Zornberg, J. G., Chen, T.-C., Ho, Y.-H., & Lin, B.-H. (2009). Behavior of Geogrid-Sand Interface in Direct Shear Mode. Journal of Geotechnical and Geoenvironmental Engineering, 135(12), 1863–1871. doi:10.1061/(asce)gt.1943-5606.0000150.

Zornberg, J. G., & Gupta, R. (2010, May). Geosynthetics in pavements: North American contributions. Theme Speaker Lecture, Proceedings of the 9th International Conference on Geosynthetics, 23-27 May 2010, Guarujá, Brazil.

Harianto, T. (2022). Performance of Subbase Layer with Geogrid Reinforcement and Zeolite-Waterglass Stabilization. Civil Engineering Journal (Iran), 8(2), 251–262. doi:10.28991/CEJ-2022-08-02-05.

Zhang, R., Liu, Z., Zheng, J., & Zhang, J. (2020). Experimental Evaluation of Lateral Swelling Pressure of Expansive Soil Fill behind a Retaining Wall. Journal of Materials in Civil Engineering, 32(2), 04019360. doi:10.1061/(asce)mt.1943-5533.0003032.

Zhang, R., Long, M., & Zheng, J. (2019). Comparison of Environmental Impacts of Two Alternative Stabilization Techniques on Expansive Soil Slopes. Advances in Civil Engineering, 9454929. doi:10.1155/2019/9454929.

Dong, J. gui, Xu, G. yuan, Lv, H. bo, & Yang, J. yan. (2019). Prediction of Expansive Soil Strength Based on Micro-scale Properties. Geotechnical and Geological Engineering, 37(2), 869–882. doi:10.1007/s10706-018-0657-x.

Xiao, J., Yang, H. P., Zhang, J. H., & Tang, X. Y. (2018). Surficial Failure of Expansive Soil Cutting Slope and Its Flexible Support Treatment Technology. Advances in Civil Engineering, 2018. doi:10.1155/2018/1609608.

Liu, Y., & Vanapalli, S. K. (2017). Influence of Lateral Swelling Pressure on the Geotechnical Infrastructure in Expansive Soils. Journal of Geotechnical and Geoenvironmental Engineering, 143(6), 04017006. doi:10.1061/(asce)gt.1943-5606.0001651.

Al-Omari, R. R. O., Fattah, M. Y., & Ali, H. A. (2016). Treatment of soil swelling using geogrid reinforced columns. Italian Journal of Geosciences, 135(1), 83–94. doi:10.3301/IJG.2014.54.

Khan, M. S., Hossain, S., Ahmed, A., & Faysal, M. (2017). Investigation of a shallow slope failure on expansive clay in Texas. Engineering Geology, 219, 118–129. doi:10.1016/j.enggeo.2016.10.004.

Liu, S., Lu, Y., Weng, L., & Bai, F. (2015). Field study of treatment for expansive soil/rock channel slope with soilbags. Geotextiles and Geomembranes, 43(4), 283–292. doi:10.1016/j.geotexmem.2015.04.004.

Wang, L. J., Liu, S. H., & Zhou, B. (2015). Experimental study on the inclusion of soilbags in retaining walls constructed in expansive soils. Geotextiles and Geomembranes, 43(1), 89–96. doi:10.1016/j.geotexmem.2014.11.002.

Hou, T. shun, Xu, G. li, Shen, Y. Jun, Wu, Z. Zhong, Zhang, N. Ning, & Wang, R. (2013). Formation mechanism and stability analysis of the Houba expansive soil landslide. Engineering Geology, 161, 34–43. doi:10.1016/j.enggeo.2013.04.010.

Pathak, Y. P., & Alfaro, M. C. (2010). Wetting-drying behaviour of geogrid-reinforced clay under working load conditions. Geosynthetics International, 17(3), 144–156. doi:10.1680/gein.2010.17.3.144.

Won, M.-S., & Kim, Y.-S. (2007). Internal deformation behavior of geosynthetic-reinforced soil walls. Geotextiles and Geomembranes, 25(1), 10–22. doi:10.1016/j.geotexmem.2006.10.001.

Khoderagha, N., & Assaf, G. (2024). Assessment of Ground Penetrating Radar for Pyrite Swelling Detection in Soils. Civil Engineering Journal (Iran), 10(3), 729–737. doi:10.28991/CEJ-2024-010-03-05.

ASTM C117-13. (2017). Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing. ASTM International, Pennsylvania, United States. doi:10.1520/C0117-13.

ASTM D7928-17. (2021). Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. ASTM International, Pennsylvania, United States. doi:10.1520/D7928-17.

ASTM D4318-10. (2014). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soil. ASTM International, Pennsylvania, United States. doi:10.1520/D4318-10.

ASTM D4943-08. (2018). Standard Test Method for Shrinkage Factors of Soils by the Wax Method (Withdrawn 2017). ASTM International, Pennsylvania, United States. doi:10.1520/D4943-08.

AASHTO M 145-91. (2004). Classification of Soils and Soil-Aggregate Mixtures for Highway Construction purpose. American Association of State Highway and Transportation Officials (AASHTO), Washington, United States.

ASTM D2487-17. (2020). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-17.

ASTM D698-12. (2021). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, Pennsylvania, United States. doi:10.1520/D0698-12R21.

ASTM D1883-21. (2021). Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D1883-21.

ASTM D2216-98. (2017). Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International, Pennsylvania, United States. doi:10.1520/D2216-98.

ASTM D854-14. (2023). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer (Withdrawn 2023). ASTM International, Pennsylvania, United States. doi:10.1520/D0854-14.

Basha, A., Azzam, W., & Elsiragy, M. (2024). Utilization of Sand Cushion for Stabilization of Peat Layer Considering Dynamic Response of Compaction. Civil Engineering Journal, 10(4), 1182–1195. doi:10.28991/CEJ-2024-010-04-011.

Zhan, T. L. T., Chen, R., & Ng, C. W. W. (2014). Wetting-induced softening behavior of an unsaturated expansive clay. Landslides, 11(6), 1051–1061. doi:10.1007/s10346-013-0449-6.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-12-020

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Hairulla Hairulla, tri Harianto, Abdul Rahman Djamaluddin, Ardy Arsyad

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message