The Performance of Geosynthetic Reinforcement Road Pavement Over Expansive Soil Subgrade
Vol. 10 No. 12 (2024): December
Research Articles
Downloads
Doi: 10.28991/CEJ-2024-010-12-020
Full Text: PDF
Hairulla, ., Harianto, T., Djamaluddin, A. R., & Arsyad, A. (2024). The Performance of Geosynthetic Reinforcement Road Pavement Over Expansive Soil Subgrade. Civil Engineering Journal, 10(12), 4117–4131. https://doi.org/10.28991/CEJ-2024-010-12-020
[1] Bowles, J, E. (1986). Engineering Properties of Soils and Their Measurement. Singapore: McGraw-Hill, Inc, New York, United States.
[2] Teixeira, S. H. C., Bueno, B. S., & Zornberg, J. G. (2007). Pullout Resistance of Individual Longitudinal and Transverse Geogrid Ribs. Journal of Geotechnical and Geoenvironmental Engineering, 133(1), 37–50. doi:10.1061/(asce)1090-0241(2007)133:1(37).
[3] McCartney, J. S., Kuhn, J. A., & Zornberg, J. G. (2005). Geosynthetic drainage layers in contact with unsaturated soils. Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, 2301 - 2306. doi:10.3233/978-1-61499-656-9-2301.
[4] Li, C., & Zornberg, J. G. (2013). Mobilization of Reinforcement Forces in Fiber-Reinforced Soil. Journal of Geotechnical and Geoenvironmental Engineering, 139(1), 107–115. doi:10.1061/(asce)gt.1943-5606.0000745.
[5] Freilich, B. J., Li, C., & Zornberg, J. G. (2010). Effective shear strength of fiber-reinforced clays. 9th International Conference on Geosynthetics - Geosynthetics: Advanced Solutions for a Challenging World, ICG 2010, 23-27 May, 2010, Guarujá, Brazil.
[6] Zornberg, J. G. (2017). Functions and Applications of Geosynthetics in Roadways. Procedia Engineering, 189, 298–306. doi:10.1016/j.proeng.2017.05.048.
[7] Zornberg, J. G., & Gupta, R. (2009). Reinforcement of pavements over expansive clay subgrades. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering, 1, 765–768. doi:10.3233/978-1-60750-031-5-765.
[8] Liu, C.-N., Zornberg, J. G., Chen, T.-C., Ho, Y.-H., & Lin, B.-H. (2009). Behavior of Geogrid-Sand Interface in Direct Shear Mode. Journal of Geotechnical and Geoenvironmental Engineering, 135(12), 1863–1871. doi:10.1061/(asce)gt.1943-5606.0000150.
[9] Zornberg, J. G., & Gupta, R. (2010, May). Geosynthetics in pavements: North American contributions. Theme Speaker Lecture, Proceedings of the 9th International Conference on Geosynthetics, 23-27 May 2010, Guarujá, Brazil.
[10] Harianto, T. (2022). Performance of Subbase Layer with Geogrid Reinforcement and Zeolite-Waterglass Stabilization. Civil Engineering Journal (Iran), 8(2), 251–262. doi:10.28991/CEJ-2022-08-02-05.
[11] Zhang, R., Liu, Z., Zheng, J., & Zhang, J. (2020). Experimental Evaluation of Lateral Swelling Pressure of Expansive Soil Fill behind a Retaining Wall. Journal of Materials in Civil Engineering, 32(2), 04019360. doi:10.1061/(asce)mt.1943-5533.0003032.
[12] Zhang, R., Long, M., & Zheng, J. (2019). Comparison of Environmental Impacts of Two Alternative Stabilization Techniques on Expansive Soil Slopes. Advances in Civil Engineering, 9454929. doi:10.1155/2019/9454929.
[13] Dong, J. gui, Xu, G. yuan, Lv, H. bo, & Yang, J. yan. (2019). Prediction of Expansive Soil Strength Based on Micro-scale Properties. Geotechnical and Geological Engineering, 37(2), 869–882. doi:10.1007/s10706-018-0657-x.
[14] Xiao, J., Yang, H. P., Zhang, J. H., & Tang, X. Y. (2018). Surficial Failure of Expansive Soil Cutting Slope and Its Flexible Support Treatment Technology. Advances in Civil Engineering, 2018. doi:10.1155/2018/1609608.
[15] Liu, Y., & Vanapalli, S. K. (2017). Influence of Lateral Swelling Pressure on the Geotechnical Infrastructure in Expansive Soils. Journal of Geotechnical and Geoenvironmental Engineering, 143(6), 04017006. doi:10.1061/(asce)gt.1943-5606.0001651.
[16] Al-Omari, R. R. O., Fattah, M. Y., & Ali, H. A. (2016). Treatment of soil swelling using geogrid reinforced columns. Italian Journal of Geosciences, 135(1), 83–94. doi:10.3301/IJG.2014.54.
[17] Khan, M. S., Hossain, S., Ahmed, A., & Faysal, M. (2017). Investigation of a shallow slope failure on expansive clay in Texas. Engineering Geology, 219, 118–129. doi:10.1016/j.enggeo.2016.10.004.
[18] Liu, S., Lu, Y., Weng, L., & Bai, F. (2015). Field study of treatment for expansive soil/rock channel slope with soilbags. Geotextiles and Geomembranes, 43(4), 283–292. doi:10.1016/j.geotexmem.2015.04.004.
[19] Wang, L. J., Liu, S. H., & Zhou, B. (2015). Experimental study on the inclusion of soilbags in retaining walls constructed in expansive soils. Geotextiles and Geomembranes, 43(1), 89–96. doi:10.1016/j.geotexmem.2014.11.002.
[20] Hou, T. shun, Xu, G. li, Shen, Y. Jun, Wu, Z. Zhong, Zhang, N. Ning, & Wang, R. (2013). Formation mechanism and stability analysis of the Houba expansive soil landslide. Engineering Geology, 161, 34–43. doi:10.1016/j.enggeo.2013.04.010.
[21] Pathak, Y. P., & Alfaro, M. C. (2010). Wetting-drying behaviour of geogrid-reinforced clay under working load conditions. Geosynthetics International, 17(3), 144–156. doi:10.1680/gein.2010.17.3.144.
[22] Won, M.-S., & Kim, Y.-S. (2007). Internal deformation behavior of geosynthetic-reinforced soil walls. Geotextiles and Geomembranes, 25(1), 10–22. doi:10.1016/j.geotexmem.2006.10.001.
[23] Khoderagha, N., & Assaf, G. (2024). Assessment of Ground Penetrating Radar for Pyrite Swelling Detection in Soils. Civil Engineering Journal (Iran), 10(3), 729–737. doi:10.28991/CEJ-2024-010-03-05.
[24] ASTM C117-13. (2017). Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing. ASTM International, Pennsylvania, United States. doi:10.1520/C0117-13.
[25] ASTM D7928-17. (2021). Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. ASTM International, Pennsylvania, United States. doi:10.1520/D7928-17.
[26] ASTM D4318-10. (2014). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soil. ASTM International, Pennsylvania, United States. doi:10.1520/D4318-10.
[27] ASTM D4943-08. (2018). Standard Test Method for Shrinkage Factors of Soils by the Wax Method (Withdrawn 2017). ASTM International, Pennsylvania, United States. doi:10.1520/D4943-08.
[28] AASHTO M 145-91. (2004). Classification of Soils and Soil-Aggregate Mixtures for Highway Construction purpose. American Association of State Highway and Transportation Officials (AASHTO), Washington, United States.
[29] ASTM D2487-17. (2020). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-17.
[30] ASTM D698-12. (2021). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, Pennsylvania, United States. doi:10.1520/D0698-12R21.
[31] ASTM D1883-21. (2021). Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D1883-21.
[32] ASTM D2216-98. (2017). Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International, Pennsylvania, United States. doi:10.1520/D2216-98.
[33] ASTM D854-14. (2023). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer (Withdrawn 2023). ASTM International, Pennsylvania, United States. doi:10.1520/D0854-14.
[34] Basha, A., Azzam, W., & Elsiragy, M. (2024). Utilization of Sand Cushion for Stabilization of Peat Layer Considering Dynamic Response of Compaction. Civil Engineering Journal, 10(4), 1182–1195. doi:10.28991/CEJ-2024-010-04-011.
[35] Zhan, T. L. T., Chen, R., & Ng, C. W. W. (2014). Wetting-induced softening behavior of an unsaturated expansive clay. Landslides, 11(6), 1051–1061. doi:10.1007/s10346-013-0449-6.
[2] Teixeira, S. H. C., Bueno, B. S., & Zornberg, J. G. (2007). Pullout Resistance of Individual Longitudinal and Transverse Geogrid Ribs. Journal of Geotechnical and Geoenvironmental Engineering, 133(1), 37–50. doi:10.1061/(asce)1090-0241(2007)133:1(37).
[3] McCartney, J. S., Kuhn, J. A., & Zornberg, J. G. (2005). Geosynthetic drainage layers in contact with unsaturated soils. Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, 2301 - 2306. doi:10.3233/978-1-61499-656-9-2301.
[4] Li, C., & Zornberg, J. G. (2013). Mobilization of Reinforcement Forces in Fiber-Reinforced Soil. Journal of Geotechnical and Geoenvironmental Engineering, 139(1), 107–115. doi:10.1061/(asce)gt.1943-5606.0000745.
[5] Freilich, B. J., Li, C., & Zornberg, J. G. (2010). Effective shear strength of fiber-reinforced clays. 9th International Conference on Geosynthetics - Geosynthetics: Advanced Solutions for a Challenging World, ICG 2010, 23-27 May, 2010, Guarujá, Brazil.
[6] Zornberg, J. G. (2017). Functions and Applications of Geosynthetics in Roadways. Procedia Engineering, 189, 298–306. doi:10.1016/j.proeng.2017.05.048.
[7] Zornberg, J. G., & Gupta, R. (2009). Reinforcement of pavements over expansive clay subgrades. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering, 1, 765–768. doi:10.3233/978-1-60750-031-5-765.
[8] Liu, C.-N., Zornberg, J. G., Chen, T.-C., Ho, Y.-H., & Lin, B.-H. (2009). Behavior of Geogrid-Sand Interface in Direct Shear Mode. Journal of Geotechnical and Geoenvironmental Engineering, 135(12), 1863–1871. doi:10.1061/(asce)gt.1943-5606.0000150.
[9] Zornberg, J. G., & Gupta, R. (2010, May). Geosynthetics in pavements: North American contributions. Theme Speaker Lecture, Proceedings of the 9th International Conference on Geosynthetics, 23-27 May 2010, Guarujá, Brazil.
[10] Harianto, T. (2022). Performance of Subbase Layer with Geogrid Reinforcement and Zeolite-Waterglass Stabilization. Civil Engineering Journal (Iran), 8(2), 251–262. doi:10.28991/CEJ-2022-08-02-05.
[11] Zhang, R., Liu, Z., Zheng, J., & Zhang, J. (2020). Experimental Evaluation of Lateral Swelling Pressure of Expansive Soil Fill behind a Retaining Wall. Journal of Materials in Civil Engineering, 32(2), 04019360. doi:10.1061/(asce)mt.1943-5533.0003032.
[12] Zhang, R., Long, M., & Zheng, J. (2019). Comparison of Environmental Impacts of Two Alternative Stabilization Techniques on Expansive Soil Slopes. Advances in Civil Engineering, 9454929. doi:10.1155/2019/9454929.
[13] Dong, J. gui, Xu, G. yuan, Lv, H. bo, & Yang, J. yan. (2019). Prediction of Expansive Soil Strength Based on Micro-scale Properties. Geotechnical and Geological Engineering, 37(2), 869–882. doi:10.1007/s10706-018-0657-x.
[14] Xiao, J., Yang, H. P., Zhang, J. H., & Tang, X. Y. (2018). Surficial Failure of Expansive Soil Cutting Slope and Its Flexible Support Treatment Technology. Advances in Civil Engineering, 2018. doi:10.1155/2018/1609608.
[15] Liu, Y., & Vanapalli, S. K. (2017). Influence of Lateral Swelling Pressure on the Geotechnical Infrastructure in Expansive Soils. Journal of Geotechnical and Geoenvironmental Engineering, 143(6), 04017006. doi:10.1061/(asce)gt.1943-5606.0001651.
[16] Al-Omari, R. R. O., Fattah, M. Y., & Ali, H. A. (2016). Treatment of soil swelling using geogrid reinforced columns. Italian Journal of Geosciences, 135(1), 83–94. doi:10.3301/IJG.2014.54.
[17] Khan, M. S., Hossain, S., Ahmed, A., & Faysal, M. (2017). Investigation of a shallow slope failure on expansive clay in Texas. Engineering Geology, 219, 118–129. doi:10.1016/j.enggeo.2016.10.004.
[18] Liu, S., Lu, Y., Weng, L., & Bai, F. (2015). Field study of treatment for expansive soil/rock channel slope with soilbags. Geotextiles and Geomembranes, 43(4), 283–292. doi:10.1016/j.geotexmem.2015.04.004.
[19] Wang, L. J., Liu, S. H., & Zhou, B. (2015). Experimental study on the inclusion of soilbags in retaining walls constructed in expansive soils. Geotextiles and Geomembranes, 43(1), 89–96. doi:10.1016/j.geotexmem.2014.11.002.
[20] Hou, T. shun, Xu, G. li, Shen, Y. Jun, Wu, Z. Zhong, Zhang, N. Ning, & Wang, R. (2013). Formation mechanism and stability analysis of the Houba expansive soil landslide. Engineering Geology, 161, 34–43. doi:10.1016/j.enggeo.2013.04.010.
[21] Pathak, Y. P., & Alfaro, M. C. (2010). Wetting-drying behaviour of geogrid-reinforced clay under working load conditions. Geosynthetics International, 17(3), 144–156. doi:10.1680/gein.2010.17.3.144.
[22] Won, M.-S., & Kim, Y.-S. (2007). Internal deformation behavior of geosynthetic-reinforced soil walls. Geotextiles and Geomembranes, 25(1), 10–22. doi:10.1016/j.geotexmem.2006.10.001.
[23] Khoderagha, N., & Assaf, G. (2024). Assessment of Ground Penetrating Radar for Pyrite Swelling Detection in Soils. Civil Engineering Journal (Iran), 10(3), 729–737. doi:10.28991/CEJ-2024-010-03-05.
[24] ASTM C117-13. (2017). Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing. ASTM International, Pennsylvania, United States. doi:10.1520/C0117-13.
[25] ASTM D7928-17. (2021). Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. ASTM International, Pennsylvania, United States. doi:10.1520/D7928-17.
[26] ASTM D4318-10. (2014). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soil. ASTM International, Pennsylvania, United States. doi:10.1520/D4318-10.
[27] ASTM D4943-08. (2018). Standard Test Method for Shrinkage Factors of Soils by the Wax Method (Withdrawn 2017). ASTM International, Pennsylvania, United States. doi:10.1520/D4943-08.
[28] AASHTO M 145-91. (2004). Classification of Soils and Soil-Aggregate Mixtures for Highway Construction purpose. American Association of State Highway and Transportation Officials (AASHTO), Washington, United States.
[29] ASTM D2487-17. (2020). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-17.
[30] ASTM D698-12. (2021). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, Pennsylvania, United States. doi:10.1520/D0698-12R21.
[31] ASTM D1883-21. (2021). Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D1883-21.
[32] ASTM D2216-98. (2017). Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International, Pennsylvania, United States. doi:10.1520/D2216-98.
[33] ASTM D854-14. (2023). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer (Withdrawn 2023). ASTM International, Pennsylvania, United States. doi:10.1520/D0854-14.
[34] Basha, A., Azzam, W., & Elsiragy, M. (2024). Utilization of Sand Cushion for Stabilization of Peat Layer Considering Dynamic Response of Compaction. Civil Engineering Journal, 10(4), 1182–1195. doi:10.28991/CEJ-2024-010-04-011.
[35] Zhan, T. L. T., Chen, R., & Ng, C. W. W. (2014). Wetting-induced softening behavior of an unsaturated expansive clay. Landslides, 11(6), 1051–1061. doi:10.1007/s10346-013-0449-6.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
