Enhancing the Properties of Steel Fiber Self-Compacting NaOH-Based Geopolymer Concrete with the Addition of Metakaolin
Abstract
Doi: 10.28991/CEJ-2024-010-07-011
Full Text: PDF
Keywords
References
Muttashar, H. L., Ariffin, M. A. M., Hussein, M. N., Hussin, M. W., & Ishaq, S. Bin. (2018). Self-compacting geopolymer concrete with spend garnet as sand replacement. Journal of Building Engineering, 15, 85–94. doi:10.1016/j.jobe.2017.10.007.
Almutairi, A. L., Tayeh, B. A., Adesina, A., Isleem, H. F., & Zeyad, A. M. (2021). Potential applications of geopolymer concrete in construction: A review. Case Studies in Construction Materials, 15, 733. doi:10.1016/j.cscm.2021.e00733.
Kamseu, E., Ponzoni, C., Tippayasam, C., Taurino, R., Chaysuwan, D., Sglavo, V. M., Thavorniti, P., & Leonelli, C. (2016). Self-compacting geopolymer concretes: Effects of addition of aluminosilicate-rich fines. Journal of Building Engineering, 5, 211–221. doi:10.1016/j.jobe.2016.01.004.
Rahman, S. K., & Al-Ameri, R. (2023). Structural assessment of Basalt FRP reinforced self-compacting geopolymer concrete using artificial neural network (ANN) modelling. Construction and Building Materials, 397, 132464. doi:10.1016/j.conbuildmat.2023.132464.
Gülşan, M. E., Alzeebaree, R., Rasheed, A. A., Niş, A., & Kurtoğlu, A. E. (2019). Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber. Construction and Building Materials, 211, 271–283. doi:10.1016/j.conbuildmat.2019.03.228.
Kanagaraj, B., Anand, N., Jerry, R., Samuvel Raj, R., Andrushia, D., & Lubloy, E. (2023). Influence of protective coating on flexural behaviour of high strength self-compacting geopolymer concrete beams exposed to standard fire temperature. Case Studies in Construction Materials, 19, 2468. doi:10.1016/j.cscm.2023.e02468.
Neupane, K., & Hadigheh, S. A. (2021). Sodium hydroxide-free geopolymer binder for prestressed concrete applications. Construction and Building Materials, 293, 123397. doi:10.1016/j.conbuildmat.2021.123397.
Kurtoğlu, A. E., Hussein, A. K., Gülşan, M. E., & Çevik, A. (2021). Flexural behavior of HDPE tubular beams filled with self-compacting geopolymer concrete. Thin-Walled Structures, 167(May), 108096. doi:10.1016/j.tws.2021.108096.
Patel, Y. J., & Shah, N. (2018). Enhancement of the properties of Ground Granulated Blast Furnace Slag based Self Compacting Geopolymer Concrete by incorporating Rice Husk Ash. Construction and Building Materials, 171, 654–662. doi:10.1016/j.conbuildmat.2018.03.166.
Patel, Y. J., & Shah, N. (2018). Development of self-compacting geopolymer concrete as a sustainable construction material. Sustainable Environment Research, 28(6), 412–421. doi:10.1016/j.serj.2018.08.004.
Vishnu, N., Kolli, R., & Ravella, D. P. (2020). Studies on Self-Compacting geopolymer concrete containing flyash, GGBS, wollastonite and graphene oxide. Materials Today: Proceedings, 43, 2422–2427. doi:10.1016/j.matpr.2021.02.142.
Luo, Y. P., Zhang, Q., Wang, D., Yang, L., Gao, X., Liu, Y., & Xue, G. (2023). Mechanical and microstructural properties of MK-FA-GGBFS-based self-compacting geopolymer concrete composites. Journal of Building Engineering, 77, 107452. doi:10.1016/j.jobe.2023.107452.
Rahman, S. K., & Al-Ameri, R. (2021). A newly developed self-compacting geopolymer concrete under ambient condition. Construction and Building Materials, 267, 121822. doi:10.1016/j.conbuildmat.2020.121822.
Brouwers, H. J. H., & Radix, H. J. (2005). Self-compacting concrete: Theoretical and experimental study. Cement and Concrete Research, 35(11), 2116–2136. doi:10.1016/j.cemconres.2005.06.002.
Ahmed, S., El-Zohairy, A., Eisa, A. S., Mohamed, M. A. E. A. B., & Abdo, A. (2023). Experimental Investigation of Self-Compacting Concrete with Recycled Concrete Aggregate. Buildings, 13(4). doi:10.3390/buildings13040856.
Okamura, H., & Ouchi, M. (2003). Self-Compacting Concrete. Journal of Advanced Concrete Technology, 1(1), 5–15. doi:10.3151/jact.1.5.
Bheel, N., Awoyera, P., Tafsirojjaman, T., Hamah Sor, N., & sohu, S. (2021). Synergic effect of metakaolin and groundnut shell ash on the behavior of fly ash-based self-compacting geopolymer concrete. Construction and Building Materials, 311, 125327. doi:10.1016/j.conbuildmat.2021.125327.
Kanagaraj, B., Anand, N., Diana Andrushia, A., Kiran, T., & Lubloy, E. (2023). Pull-Out behavior and microstructure characteristics of binary blended self-compacting geopolymer concrete subjected to elevated temperature. Alexandria Engineering Journal, 76, 469–490. doi:10.1016/j.aej.2023.06.055.
Bheel, N., Awoyera, P., Shar, I. A., Abbasi, S. A., Khahro, S. H., & Prakash A, K. (2021). Synergic effect of millet husk ash and wheat straw ash on the fresh and hardened properties of Metakaolin-based self-compacting geopolymer concrete. Case Studies in Construction Materials, 15, 729. doi:10.1016/j.cscm.2021.e00729.
Kanagaraj, B., Anand, N., Raj R, S., & Lubloy, E. (2024). Behavioural studies on binary blended high strength self compacting geopolymer concrete exposed to standard fire temperature. Ain Shams Engineering Journal, 15(2), 102394. doi:10.1016/j.asej.2023.102394.
Raju, R. A., Lim, S., Akiyama, M., & Kageyama, T. (2020). Effects of concrete flow on the distribution and orientation of fibers and flexural behavior of steel fiber-reinforced self-compacting concrete beams. Construction and Building Materials, 262, 119963. doi:10.1016/j.conbuildmat.2020.119963.
Gokulnath, V., Ramesh, B., & Sivashankar, S. (2020). Influence of M sand in self compacting concrete with addition of steel fiber. Materials Today: Proceedings, 22, 1026–1030. doi:10.1016/j.matpr.2019.11.270.
Lu, Y., Liu, Z., Li, S., & Li, W. (2017). Behavior of steel fibers reinforced self-stressing and self-compacting concrete-filled steel tube subjected to bending. Construction and Building Materials, 156, 639–651. doi:10.1016/j.conbuildmat.2017.09.019.
Edris, W. F., Elbialy, S., El-Zohairy, A., Soliman, A. M., Shawky, S. M. M., Selouma, T. I., & Al Sayed, A. A.-K. A. (2024). Examining Mechanical Property Differences in Concrete with Natural and Synthetic Fiber Additives. Journal of Composites Science, 8(5), 167. doi:10.3390/jcs8050167.
Rautray, S. S., Mohanty, B. N., & Das, M. R. (2020). Performance of self-compacting geopolymer concrete using Bacillus Licheniformis. Materials Today: Proceedings, 26, 2817–2824. doi:10.1016/j.matpr.2020.02.587.
Vigneshkumar, A., Freeda Christy, C., Muthukannan, M., Maheswaran, M., Arunkumar, K., & Kanniga Devi, R. (2024). Experimental investigations on fresh and mechanical properties of fly ash and ground granulated blast furnace slag self-compacting geopolymer concrete. Materials Today: Proceedings. doi:10.1016/j.matpr.2024.01.051.
Kiran Kumar, N. L. N., & Ramana Reddy, I. V. (2023). A study on the effect of NaOH molarity on flyash based self compacting geopolymer concrete. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.03.144.
Awoyera, P. O., Kirgiz, M. S., Viloria, A., & Ovallos-Gazabon, D. (2020). Estimating strength properties of geopolymer self-compacting concrete using machine learning techniques. Journal of Materials Research and Technology, 9(4), 9016–9028. doi:10.1016/j.jmrt.2020.06.008.
Ahmad Zaidi, F. H., Ahmad, R., Al Bakri Abdullah, M. M., Abd Rahim, S. Z., Yahya, Z., Li, L. Y., & Ediati, R. (2021). Geopolymer as underwater concreting material: A review. Construction and Building Materials, 291, 123276. doi:10.1016/j.conbuildmat.2021.123276.
Nuaklong, P., Worawatnalunart, P., Jongvivatsakul, P., Tangaramvong, S., Pothisiri, T., & Likitlersuang, S. (2021). Pre- and post-fire mechanical performances of high calcium fly ash geopolymer concrete containing granite waste. Journal of Building Engineering, 44(September), 103265. doi:10.1016/j.jobe.2021.103265.
Wang, J., Dai, Q., Si, R., Ma, Y., & Guo, S. (2020). Fresh and mechanical performance and freeze-thaw durability of steel fiber-reinforced rubber self-compacting concrete (SRSCC). Journal of Cleaner Production, 277, 123180. doi:10.1016/j.jclepro.2020.123180.
Sanjeev, J., & Sai Nitesh, K. J. N. (2020). Study on the effect of steel and glass fibers on fresh and hardened properties of vibrated concrete and self-compacting concrete. Materials Today: Proceedings, 27, 1559–1568. doi:10.1016/j.matpr.2020.03.208.
Abid, S. R., Abdul-Hussein, M. L., Ayoob, N. S., Ali, S. H., & Kadhum, A. L. (2020). Repeated drop-weight impact tests on self-compacting concrete reinforced with micro-steel fiber. Heliyon, 6(1), 3198. doi:10.1016/j.heliyon.2020.e03198.
Li, N., Lu, Y., Li, S., & Gao, D. (2020). Axial compressive behaviour of steel fibre reinforced self-stressing and self-compacting concrete-filled steel tube columns. Engineering Structures, 222. doi:10.1016/j.engstruct.2020.111108.
Abrishambaf, A., Cunha, V. M. C. F., & Barros, J. A. O. (2016). A two-phase material approach to model steel fibre reinforced self-compacting concrete in panels. Engineering Fracture Mechanics, 162, 1–20. doi:10.1016/j.engfracmech.2016.04.043.
Mohamed, R. N., Zamri, N. F., Elliott, K. S., Rahman, A. B. A., & Bakhary, N. (2019). Steel fibre self-compacting concrete under biaxial loading. Construction and Building Materials, 224, 255–265. doi:10.1016/j.conbuildmat.2019.07.076.
Gokulnath, V., Ramesh, B., & Sivashankar, S. (2020). Study on M-sand in self compacting concrete with addition of steel fiber in M-25 grade-a review. Materials Today: Proceedings, 22, 966–969. doi:10.1016/j.matpr.2019.11.229.
Ramkumar, K. B., Kannan Rajkumar, P. R., Noor Ahmmad, S., & Jegan, M. (2020). A Review on Performance of Self-Compacting Concrete – Use of Mineral Admixtures and Steel Fibres with Artificial Neural Network Application. Construction and Building Materials, 261, 120215. doi:10.1016/j.conbuildmat.2020.120215.
Sepulcre-Aguilar, A., & Hernández-Olivares, F. (2010). Assessment of phase formation in lime-based mortars with added metakaolin, Portland cement and sepiolite, for grouting of historic masonry. Cement and Concrete Research, 40(1), 66–76. doi:10.1016/j.cemconres.2009.08.028.
EiresA, R., CamõesB, A., & JalaliC, S. (2009). Compressed earth blocks using metakaolin and lime with antifungicide additions. Mediterra, 4, 1-6.
Slavid, I., Thomson, M. L., Wathne, J., & Weiss, N. R. (2013). Development and evaluation of a lime-metakaolin grout. 3rd Historic Mortars Conference, 11-14 September, Glasgow, Scotland.
Aggelakopoulou, E., Bakolas, A., & Moropoulou, A. (2011). Properties of lime-metakolin mortars for the restoration of historic masonries. Applied Clay Science, 53(1), 15–19. doi:10.1016/j.clay.2011.04.005.
Azeiteiro, L. C., Velosa, A., Paiva, H., Mantas, P. Q., Ferreira, V. M., & Veiga, R. (2014). Development of grouts for consolidation of old renders. Construction and Building Materials, 50, 352–360. doi:10.1016/j.conbuildmat.2013.09.006.
Vavričuk, A., Bokan-Bosiljkov, V., & Kramar, S. (2018). The influence of metakaolin on the properties of natural hydraulic lime-based grouts for historic masonry repair. Construction and Building Materials, 172, 706–716. doi:10.1016/j.conbuildmat.2018.04.007.
Tape, S. (2012). Standard test methods for measuring adhesion by tape test1. ASTM International, Pennsylvania, United States.
ECP-203-2020. (2020). The Egyptian Code for Design and Construction of Concrete Structures. Housing and Building Research Center, Cairo, Egypt.
EN 197-1. (1992). Cement - Part 1: Composition, specifications and conformity criteria for common cements Ciment. European Committee for Standardization, Brussels, Belgium.
ASTM C33/C33M-18. (2023). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.
ASTM C494/C494M-17. (2020). Standard Specification for Chemical Admixtures for Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.
ASTM C1602/C1602M-22. (2022). Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C1602_C1602M-22.
BS 1881-124:2015. (2015). Testing concrete. Methods for analysis of hardened concrete. British Standards Institution, London, United Kingdom.
ASTM C642-97. (2017). Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0642-97.
ASTM C496-96. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0496-96.
ASTM C78-09. (2010). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM International, Pennsylvania, United States. doi:10.1520/C0078-09.
Xu, F., Chen, G., Li, K., Zhang, Z., Luo, Z., Li, S., Yang, D., Li, X., & Zhang, X. (2024). Interfacial bond behavior between normal OPC concrete and self-compacting geopolymer concrete enhanced by nano-SiO2. Construction and Building Materials, 411, 134617. doi:10.1016/j.conbuildmat.2023.134617.
Al Sayed, A. A. K. A., Al-Waked, Q. F., Shawky, S. M. M., Al-jabali, H. M., & Fouad Edris, W. (2023). Effect of alkali activated limestone-silica fume blended precursor on performance enhancement of recycled aggregate concrete. Case Studies in Construction Materials, 19(September), 2661. doi:10.1016/j.cscm.2023.e02661.
DOI: 10.28991/CEJ-2024-010-07-011
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Samy Elbialy, Ahmed A. El-Latief, Hebah Mohammad Al-jabali, Hebatallah Elsayed, Shymaa M.M. Shawky Shymaa M.M. Shawky
This work is licensed under a Creative Commons Attribution 4.0 International License.