Estimation of Soil Loss using Remote Sensing Data in a Regional Tropical Humid Catchment Area

Clement O. Nze, Jonah C. Agunwamba

Abstract


Soil erosion has been and continue to be a major threat to environmental degradation especially in the developing countries. Accurate estimation of soil loss will provide reliable information in the management and mitigation solutions to soil erosion. In this study, the soil loss in an erosion prone Anambra State of South East region of Nigeria was estimated. Due to the complex nature of the catchment characteristics of Anambra State, soil loss cannot be estimated precisely by mere application of conventional soil erosion model. Hence a site-specific methodology was developed and applied. Revised Universal Soil Loss Equation (RUSLE) was integrated with the Geographic Information System (GIS) of the environment using remote sensing to build the model. 40-years rainfall data was collated from the Nigeria Meteorological Agency and analyzed. The various parameter of RUSLE which includes: Rainfall Erosivity (R), Soil Erodibility (K), Topography (LS), Land Use and Land Cover (C), and Erosion Control practices (P) were developed and imposed into ArcGIS 10.6 to estimate the amount of annual soil loss in the area. The result indicated that about 27.58km2 (0.59%) of the study area have very low erosion rate of 0 – 5 t ha1year-1 , while the rates of erosion in 1311.52km2 (28.01%), 538.59km2 (11.50%), 1649.08km2 (35.22%), 959.09km2 (20.48%), and 196.76km2 (4.20%) of the study area are 5–10, 10–15, 15–25, 25–50 and >50 t ha-1year-1respectively. This knowledge will help decision makers in managing the land degradation problems in Anambra State of Nigeria.

 

Doi: 10.28991/CEJ-2024-010-07-014

Full Text: PDF


Keywords


Soil Loss; RUSLE; Soil Erosion; Land Degradation; Anambra State Nigeria.

References


Lal, R. (2001). Soil degradation by erosion. Land Degradation & Development, 12(6), 519–539. doi:10.1002/ldr.472.

Eswaran, H., Lal, R., & Reich, P. F. (2019). Land degradation: An overview. Response to Land Degradation, 20–35, CRC Press, Boca Raton, United States. doi:10.1201/9780429187957-4.

Maurya, S. K., Singh, V., Chand, K., & Mishra, P. K. (2024). Assessment of soil erosion in the Beas Valley, Kullu, Himachal Pradesh: A study of Western Himalayan landscape, Northern India. Soil Science Annual, 75(1), 185558. doi:10.37501/soilsa/185558.

Ananda, J., & Herath, G. (2003). Soil erosion in developing countries: A socio-economic appraisal. Journal of Environmental Management, 68(4), 343–353. doi:10.1016/S0301-4797(03)00082-3.

Odumodu, A. (2021). Mapping and Analysis of Erosion Susceptibility in Anambra State Nigeria using Revised Universal Soil Loss Equation. International Journal of Engineering Science and Computing, 11(7), 28513–28526.

Ofomata, G. E. K. (2000). Classification of soil erosion with specific reference to Anambra State of Nigeria. Environmental Review, 3(2), 252-2551.

Ekwueme, B. N. (2021). Quantification of effects of climate change on flood in tropical river basins. Cogent Engineering, 8(1), 1986967. doi:10.1080/23311916.2021.1986967.

Igwe, L. U. (2004). Soil erosion in the northern parts of the Orlu Uplands, Nigeria. Nigerian Journal of Ministry of Geology, 13, 6-1.

Merem, E. C., Twumasi, Y., Wesley, J., Alsarari, M., Fageir, S., Crisler, M., Romorno, C., Olagbegi, D., Hines, A., Mwakimi, O. S., Nwagboso, E., Leggett, S., Foster, D., Purry, V., & Washington, J. (2019). Analyzing Land Use and Change Detection in Eastern Nigeria Using GIS and Remote Sensing. American Journal of Geographic Information System, 8(2), 103–117. doi:10.5923/j.ajgis.20190802.06.

Ekwueme, B. N. (2024). Regression model optimization using least square algorithms for streamflow data transposition in tropical humid Water Basin. HydroResearch, 7, 257–271. doi:10.1016/j.hydres.2024.04.005.

Arinze, E. E., Ekwueme, B. N., Obimba-Wogu, J., & Okeke, I. S. (2022). Experimental Determination of the Effect of Time of Exposure to Heat on Erosion Development in Different Soil Types. Journal of Engineering (United Kingdom), 2022. doi:10.1155/2022/8181055.

Igbokwe, J. I., Akinyede, J. O., Dang, B., Alaga, T., Ono, M. N., Nnodu, V. C., & Anike, L. O. (2008). Mapping and monitoring of the impact of gully erosion in Southeastern Nigeria with satellite remote sensing and Geographic Information System. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(part B8), 865-872.

Chukwuka, E. B., & Ifeyinwa, O. E. (2016). The impacts and implications of anthropogenic forces on the unstable geologic platform in parts of Anambra and Imo States southeastern, Nigeria. International Journal of Environmental Protection and Policy, 13(2), 104-110.

Kandel, D. D., Western, A. W., Grayson, R. B., & Turral, H. N. (2004). Process parameterization and temporal scaling in surface runoff and erosion modelling. Hydrological Processes, 18(8), 1423–1446. doi:10.1002/hyp.1421.

Foster, G. (1990) Process-Based Modelling of Soil Erosion by Water on Agricultural Land, in Soil Erosion on Agricultural Land. John Wiley & Sons Ltd., Hoboken, United States.

Sivapalan, M., Jothityangkoon, C., & Menabde, M. (2002). Linearity and nonlinearity of basin response as a function of scale: Discussion of alternative definitions. Water Resources Research, 38(2), 1-4. doi:10.1029/2001wr000482.

Renard, K. G., & Freimund, J. R. (1994). Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of Hydrology, 157(1–4), 287–306. doi:10.1016/0022-1694(94)90110-4.

Millward, A. A., & Mersey, J. E. (1999). Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena, 38(2), 109–129. doi:10.1016/S0341-8162(99)00067-3.

Angima, S. D., Stott, D. E., O’Neill, M. K., Ong, C. K., & Weesies, G. A. (2003). Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agriculture, Ecosystems and Environment, 97(1–3), 295–308. doi:10.1016/S0167-8809(03)00011-2.

Boggs, G., Devonport, C., Evans, K., & Puig, P. (2001). GIS-based rapid assessment of erosion risk in a small catchment in the wet/dry tropics of Australia. Land Degradation & Development, 12(5), 417–434. doi:10.1002/ldr.457.

Aksoy, H., & Kavvas, M. L. (2005). A review of hillslope and watershed scale erosion and sediment transport models. Catena, 64(2–3), 247–271. doi:10.1016/j.catena.2005.08.008.

Sadeghi, S. H. R., Gholami, L., Khaledi Darvishan, A., & Saeidi, P. (2014). Revue de l’application du modèle MUSLE à travers monde. Hydrological Sciences Journal, 59(2), 365–375. doi:10.1080/02626667.2013.866239.

Naipal, V., Reick, C., Pongratz, J., & Van Oost, K. (2015). Improving the global applicability of the RUSLE model - Adjustment of the topographical and rainfall erosivity factors. Geoscientific Model Development, 8(9), 2893–2913. doi:10.5194/gmd-8-2893-2015.

Kinnell, P. I. A. (2010). Event soil loss, runoff and the Universal Soil Loss Equation family of models: A review. Journal of Hydrology, 385(1–4), 384–397. doi:10.1016/j.jhydrol.2010.01.024.

Abu Hammad, A., Lundekvam, H., & Børresen, T. (2004). Adaptation of RUSLE in the eastern part of the Mediterranean region. Environmental Management, 34(6), 829–841. doi:10.1007/s00267-003-0296-7.

Nakil, M., & Khire, M. (2016). Effect of slope steepness parameter computations on soil loss estimation: review of methods using GIS. Geocarto International, 31(10), 1078–1093. doi:10.1080/10106049.2015.1120349.

Desmet, P. J. J., & Govers, G. (1996). A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of Soil and Water Conservation, 51(5), 427–433.

Omar, C. (2010). Geographic Information System Manual. Tenaga National Berhad, Kuala Lumpur, Malaysia.

Kim, H. (2006) Soil Erosion modeling Using RUSLE and GIS on the IMHA Watershed. South Korea, Master Thesis. Colorado State University, Fort Collins, United States.

Renschler, C. S., & Harbor, J. (2002). Soil erosion assessment tools from point to regional scales - The role of geomorphologists in land management research and implementation. Geomorphology, 47(2–4), 189–209. doi:10.1016/S0169-555X(02)00082-X.

Zhang, X., Drake, N., & Wainwright, J. (2002). Scaling land surface parameters for global-scale soil erosion estimation. Water Resources Research, 38(9). doi:10.1029/2001wr000356.

Yashraj, S.S. (2020). What is ArcGIS? GW prime, Washington, United States. Available online: https://www.geospatialworld.net/blogs/what-is-arcgis/ (accessed on July 2024).

Reusing, M., Schneider, T., & Ammer, U. (2000). Modelling soil loss rates in the Ethiopian Highlands by integration of high resolution MOMS-02/D2-stereo-data in a GIS. International Journal of Remote Sensing, 21(9), 1885–1896. doi:10.1080/014311600209797.

Haboudane, D., Bonn, F., Royer, A., Sommer, S., & Mehl, W. (2002). Land degradation and erosion risk mapping by fusion of spectrally based information and digital geomorphometric attributes. International Journal of Remote Sensing, 23(18), 3795–3820. doi:10.1080/01431160110104638.

Singh, M. C., Sur, K., Al-Ansari, N., Arya, P. K., Verma, V. K., & Malik, A. (2023). GIS integrated RUSLE model-based soil loss estimation and watershed prioritization for land and water conservation aspects. Frontiers in Environmental Science, 11(1136243). doi:10.3389/fenvs.2023.1136243.

Shi, Z. H., Cai, C. F., Ding, S. W., Wang, T. W., & Chow, T. L. (2004). Soil conservation planning at the small watershed level using RUSLE with GIS: a case study in the Three Gorge Area of China. Catena, 55(1), 33-48. doi:10.1016/S0341-8162(03)00088-2.

Ezeh, C. U., Igwe, O., Asare, M. Y., Ndulue, D. C., Ayadiuno, R. U., & Preko, K. (2024). A review of soil erosion modeling in Nigeria using the Revised Universal Soil Loss Equation model. Agrosystems, Geosciences and Environment, 7(1), 7,20471. doi:10.1002/agg2.20471.

Egbueri, J. C., Igwe, O., & Ifediegwu, S. I. (2022). Erosion risk mapping of Anambra State in southeastern Nigeria: soil loss estimation by RUSLE model and geoinformatics. Bulletin of Engineering Geology and the Environment, 81(3), 91. doi:10.1007/s10064-022-02589-z.

Ayadiuno, R. U., Ndulue, D. C., Mozie, A. T., & Nwokolo, I. J. (2022). Effects of Time and Land Use Land Cover Change (LULCC) in the Dimension of the Gully Expansion and Soil Particles Loss at Ibeziako Erosion Site in Nsukka Urban, Enugu State, Nigeria. Asian Journal of Geographical Research, 5(2), 1–18. doi:10.9734/ajgr/2022/v5i2129.

Fagbohun, B. J., Anifowose, A. Y. B., Odeyemi, C., Aladejana, O. O., & Aladeboyeje, A. I. (2016). GIS-based estimation of soil erosion rates and identification of critical areas in Anambra sub-basin, Nigeria. Modeling Earth Systems and Environment, 2(3). doi:10.1007/s40808-016-0218-3.

Ajibade, F. O., Nwogwu, N. A., Adelodun, B., Abdulkadir, T. S., Ajibade, T. F., Lasisi, K. H., Fadugba, O. G., Owolabi, T. A., & Olajire, O. O. (2020). Application of rusle integrated with GIS and remote sensing techniques to assess soil erosion in Anambra state, south-eastern Nigeria. Journal of Water and Climate Change, 11(1S), 407–422. doi:10.2166/wcc.2020.222.

Ekwueme, B. N. (2024). Deep neural network modeling of river discharge in a tropical humid watershed. Earth Science Informatics, 17(2), 1161–1177. doi:10.1007/s12145-023-01219-w.

Shen, H. W., & Julien, P. Y. (1992). Erosion and sediment transport. Handbook of Hydrology, McGraw-Hill INC, New York, Unites States.

Nahib, I., Wahyudin, Y., Amhar, F., Ambarwulan, W., Nugroho, N. P., Pranoto, B., Cahyana, D., Ramadhani, F., Suwedi, N., Darmawan, M., Turmudi, T., Suryanta, J., & Karolinoerita, V. (2024). Analysis of Factors Influencing Spatial Distribution of Soil Erosion under Diverse Subwatershed Based on Geospatial Perspective: A Case Study at Citarum Watershed, West Java, Indonesia. Scientifica, 2024. doi:10.1155/2024/7251691.

Borah, D. K., Krug, E. C., & Yoder, D. (2008). Watershed Sediment Yield. Sedimentation Engineering, 827–858. American Society of Civil Engineers (ASCE), Reston, United States. doi:10.1061/9780784408148.ch17.

Amado, Z., & Assefa, T. (2024). Soil Loss Estimation and Sub-Watersheds Prioritization for Management Using GIS-Based RUSLE Technique in Halaba-Bilate Watershed, Ethiopia. Asian Journal of Biological Sciences, 17(1), 1–20. doi:10.3923/ajbs.2024.1.20.

Lee, G.-S., & Lee, K.-H. (2006). Scaling effect for estimating soil loss in the RUSLE model using remotely sensed geospatial data in Korea. Hydrology and Earth System Sciences Discussions, 3(1), 135–157.

Dike, B., Alakwem, O., Nwoke, H., & Nwakwasi, N. (2018). Potential soil loss rates in Urualla, Nigeria using RUSLE. Global Journal of Science Frontier Research (H) Environment & Earth Science, 18, 43-48.

Emeribeole, A. C., & Iheaturu, C. J. (2015). Mapping of potential soil erosion risk areas in Imo State using the Revised Universal Soil Loss Equation (RUSLE). Remote Sensing (RS) and Geospatial Information System (GIS) techniques. International Journal for Research in Emerging Science and Technology, 2(10), 36-44.

Zhang, K., Li, S., Peng, W., & Yu, B. (2004). Erodibility of agricultural soils on the Loess Plateau of China. Soil and Tillage Research, 76(2), 157–165. doi:10.1016/j.still.2003.09.007.

Shirazi, M. A., & Boersma, L. (1984). A Unifying Quantitative Analysis of Soil Texture. Soil Science Society of America Journal, 48(1), 142–147. doi:10.2136/sssaj1984.03615995004800010026x.

Römkens, M. M., Prasad, S. N., & Poesen, J. A. (1986). Soil erodibility and properties. Proceedings of the 13th Congress of the International Soil Science Society, 13-20 August, 1986, Hamburg, Germany.

Wischmeier, W. H., Johnson, C. B., & Cross, B. V. (1971). A soil erodibility nomograph for farmland and construction sites. Journal of Soil and Water Conservation, 26(5), 189-193.

Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. USDA Agriculture Handbook 537, Department of Agriculture, Science and Education Administration, Washington, United States.

Kolli, M. K., Opp, C., & Groll, M. (2021). Estimation of soil erosion and sediment yield concentration across the Kolleru Lake catchment using GIS. Environmental Earth Sciences, 80(4), 161. doi:10.1007/s12665-021-09443-7.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-07-014

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Clement Onyeaso Nze, Jonah Chukwuemeka Agunwamba

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message