Strength and Acid Resistance of Mortar with Different Binders from Palm Oil Fuel Ash, Slag, and Calcium Carbide Residue

Akkadath Abdulmatin, Nurihan Sa, Saofee Dueramae, Sattawat Haruehansapong, Weerachart Tangchirapat, Chai Jaturapitakkul

Abstract


This study deals with the use of ground palm oil fuel ash (GPOFA) in combination with ground granulated blast furnace slag (GGBFS) and ground calcium carbide residue (GCR) to produce the binary and ternary binders-based alkali activated mortar. The appropriate content of materials in each binder type was determined as a function of compressive strength. The results revealed that both GPOFA:GGBFS and GPOFA:GCR binders had an optimum blending ratio of 70:30 wt%, while the GPOFA:GGBFS:GCR binder was 55:30:15 wt%. An alkaline catalyst of NaOH was admixed to the best mixture in each binder type to stimulate the mortar's compressive strength. The sulfuric acid (H2SO4) resistance of the mortar in terms of weight change was also examined. The addition of 1M NaOH in both binary and ternary binders could enhance the compressive strength and H2SO4 resistance of the mortar. The highest compressive strength and lowest weight change due to soaking in H2SO4 solution were found in the ternary binder mortar with a 1 M NaOH. The mortar with GCR immersed in H2SO4 solution resulted in an increased weight, which was different from that of the mortar without GCR. The microstructural analysis of the alkali-activated pastes indicated more reaction products than in the case of the pastes without alkali activator. However, a higher concentration of 2 M NaOH resulted in a poor microstructure, which had a negative effect on the compressive strength and H2SO4resistance.

 

Doi: 10.28991/CEJ-2024-010-07-08

Full Text: PDF


Keywords


Calcium Carbide Residue; Granulated Blast Furnace Slag; Palm Oil Fuel Ash; Alkali Activated Mortar; Sulfuric Acid Resistance.

References


Santos, M. M., Marques Sierra, A. L., Amado-Fierro, Á., Suárez, M., Blanco, F., La Fuente, J. M. G., Diez, M. A., & Centeno, T. A. (2023). Reducing cement consumption in mortars by waste-derived hydrochars. Journal of Building Engineering, 75. doi:10.1016/j.jobe.2023.106987.

Pachana, P. K., Rattanasak, U., Jitsangiam, P., & Chindaprasirt, P. (2021). Alkali-activated material synthesized from palm oil fuel ash for Cu/Zn ion removal from aqueous solutions. Journal of Materials Research and Technology, 13, 440–448. doi:10.1016/j.jmrt.2021.04.065.

Safiuddin, M., Salam, M. A., & Jumaat, M. Z. (2011). Utilization of palm oil fuel ash in concrete: A review. Journal of Civil Engineering and Management, 17(2), 234–247. doi:10.3846/13923730.2011.574450.

Abdeldjouad, L., Dheyab, W., Gamil, Y., Asadi, A., & Shukla, S. K. (2023). Thermal curing effects on alkali-activated treated soils with palm oil fuel ash. Case Studies in Construction Materials, 19, 532–539. doi:10.1016/j.cscm.2023.e02455.

Hawa, A., Salaemae, P., Abdulmatin, A., Ongwuttiwat, K., & Prachasearee, W. (2023). Properties of Palm Oil Ash Geopolymer Containing Alumina Powder and Field Para Rubber Latex. Civil Engineering Journal (Iran), 9(5), 1271–1288. doi:10.28991/CEJ-2023-09-05-017.

Liu, M. Y. J., Chua, C. P., Alengaram, U. J., & Jumaat, M. Z. (2014). Utilization of palm oil fuel ash as binder in lightweight oil palm shell geopolymer concrete. Advances in Materials Science and Engineering, 2014, 610274. doi:10.1155/2014/610274.

Runyut, D. A., Robert, S., Ismail, I., Ahmadi, R., & Abdul Samat, N. A. S. B. (2018). Microstructure and Mechanical Characterization of Alkali-Activated Palm Oil Fuel Ash. Journal of Materials in Civil Engineering, 30(7), 4018119. doi:10.1061/(asce)mt.1943-5533.0002303.

Mahamat Ahmat, A., Johnson, U.A., Fazaulnizam Shamsudin, M., Mahmoud Alnahhal, A., Shazril Idris Ibrahim, M., Ibrahim, S., & Rashid, R.S.M. (2023). Assessment of sustainable eco-processed pozzolan (EPP) from palm oil industry as a fly ash replacement in geopolymer concrete. Construction and Building Materials, 387, 131424. doi:10.1016/j.conbuildmat.2023.131424.

Najimi, M., Ghafoori, N., & Sharbaf, M. (2018). Alkali-activated natural pozzolan/slag mortars: A parametric study. Construction and Building Materials, 164, 625–643. doi:10.1016/j.conbuildmat.2017.12.222.

Ahmad, J., Kontoleon, K. J., Majdi, A., Naqash, M. T., Deifalla, A. F., Ben Kahla, N., Isleem, H. F., & Qaidi, S. M. A. (2022). A Comprehensive Review on the Ground Granulated Blast Furnace Slag (GGBS) in Concrete Production. Sustainability (Switzerland), 14(14), 8783. doi:10.3390/su14148783.

Özbay, E., Erdemir, M., & Durmuş, H. I. (2016). Utilization and efficiency of ground granulated blast furnace slag on concrete properties - A review. Construction and Building Materials, 105, 423–434. doi:10.1016/j.conbuildmat.2015.12.153.

Blotevogel, S., Doussang, L., Poirier, M., André, L., Canizarès, A., Simon, P., ... & Cyr, M. (2024). The influence of Al2O3, CaO, MgO and TiO2 content on the early-age reactivity of GGBS in blended cements, alkali-activated materials and supersulfated cements. Cement and Concrete Research, 178, 107439. doi:10.1016/j.cemconres.2024.107439.

Kumar, G., & Mishra, S. S. (2021). Effect of GGBFS on workability and strength of alkali-activated geopolymer concrete. Civil Engineering Journal (Iran), 7(6), 1036–1049. doi:10.28991/cej-2021-03091708.

Sunarsih, E. S., As’ad, S., Sam, A. R. M., & Kristiawan, S. A. (2023). Properties of Fly Ash-Slag-Based Geopolymer Concrete with Low Molarity Sodium Hydroxide. Civil Engineering Journal (Iran), 9(2), 381–392. doi:10.28991/CEJ-2023-09-02-010.

Tanu, H. M., & Unnikrishnan, S. (2023). Mechanical Strength and Microstructure of GGBS-SCBA based Geopolymer Concrete. Journal of Materials Research and Technology, 24, 7816–7831. doi:10.1016/j.jmrt.2023.05.051.

Bawab, J., El-Dieb, A., El-Hassan, H., & Khatib, J. (2023). Effect of different activation techniques on the engineering properties of cement-free binder containing volcanic ash and calcium carbide residue. Construction and Building Materials, 408, 133734. doi:10.1016/j.conbuildmat.2023.133734.

Abdulmatin, A., Khongpermgoson, P., Jaturapitakkul, C., & Tangchirapat, W. (2018). Use of Eco-Friendly Cementing Material in Concrete Made from Bottom Ash and Calcium Carbide Residue. Arabian Journal for Science and Engineering, 43(4), 1617–1626. doi:10.1007/s13369-017-2685-x.

Rattanashotinunt, C., Tangchirapat, W., Jaturapitakkul, C., Cheewaket, T., & Chindaprasirt, P. (2018). Investigation on the strength, chloride migration, and water permeability of eco-friendly concretes from industrial by-product materials. Journal of Cleaner Production, 172, 1691–1698. doi:10.1016/j.jclepro.2017.12.044.

Dueramae, S., Tangchirapat, W., Chindaprasirt, P., & Jaturapitakkul, C. (2017). Influence of Activation Methods on Strength and Chloride Resistance of Concrete Using Calcium Carbide Residue–Fly Ash Mixture as a New Binder. Journal of Materials in Civil Engineering, 29(4), 4016265. doi:10.1061/(asce)mt.1943-5533.0001808.

Dueramae, S., Tangchirapat, W., Sukontasukkul, P., Chindaprasirt, P., & Jaturapitakkul, C. (2019). Investigation of compressive strength and microstructures of activated cement free binder from fly ash-calcium carbide residue mixture. Journal of Materials Research and Technology, 8(5), 4757–4765. doi:10.1016/j.jmrt.2019.08.022.

Hanjitsuwan, S., Phoo-ngernkham, T., & Damrongwiriyanupap, N. (2017). Comparative study using Portland cement and calcium carbide residue as a promoter in bottom ash geopolymer mortar. Construction and Building Materials, 133, 128–134. doi:10.1016/j.conbuildmat.2016.12.046.

Suttiprapa, P., Tangchirapat, W., Jaturapitakkul, C., Rattanasak, U., & Jitsangiam, P. (2021). Strength behavior and autogenous shrinkage of alkali-activated mortar made from low-calcium fly ash and calcium carbide residue mixture. Construction and Building Materials, 312, 125438. doi:10.1016/j.conbuildmat.2021.125438.

Li, Z., & Ikeda, K. (2023). Influencing Factors of Sulfuric Acid Resistance of Ca-Rich Alkali-Activated Materials. Materials, 16(6), 2473. doi:10.3390/ma16062473.

Jeon, I. K., Qudoos, A., Jakhrani, S. H., Kim, H. G., & Ryou, J. S. (2020). Investigation of sulfuric acid attack upon cement mortars containing silicon carbide powder. Powder Technology, 359, 181–189. doi:10.1016/j.powtec.2019.10.026.

Aliques-Granero, J., Tognonvi, T. M., & Tagnit-Hamou, A. (2017). Durability test methods and their application to AAMs: case of sulfuric-acid resistance. Materials and Structures/Materiaux et Constructions, 50(1), 1–14. doi:10.1617/s11527-016-0904-7.

ASTMC989/C989-22. (2024). Standard Specification for Slag Cement for Use in Concrete and Mortars. ASTM International, Pennsylvania, United States. doi:10.1520/C0989_C0989M-22.

Chang, J. J. (2003). A study on the setting characteristics of sodium silicate-activated slag pastes. Cement and Concrete Research, 33(7), 1005–1011. doi:10.1016/S0008-8846(02)01096-7.

Horpibulsuk, S., Phetchuay, C., Chinkulkijniwat, A., & Cholaphatsorn, A. (2013). Strength development in silty clay stabilized with calcium carbide residue and fly ash. Soils and Foundations, 53(4), 477–486. doi:10.1016/j.sandf.2013.06.001.

Kampala, A., Horpibulsuk, S., Chinkullijniwat, A., & Shen, S. L. (2013). Engineering properties of recycled Calcium Carbide Residue stabilized clay as fill and pavement materials. Construction and Building Materials, 46, 203–210. doi:10.1016/j.conbuildmat.2013.04.037.

Somna, K., Jaturapitakkul, C., & Kajitvichyanukul, P. (2011). Microstructure of Calcium Carbide Residue–Ground Fly Ash Paste. Journal of Materials in Civil Engineering, 23(3), 298–304. doi:10.1061/(asce)mt.1943-5533.0000167.

ASTM C109/C109M-20. (2020). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, Pennsylvania, United States. doi:10.1520/C0109_C0109M-20.

Dueramae, S., Sanboonsiri, S., Suntadyon, T., Aoudta, B., Tangchirapat, W., Jongpradist, P., Pulngern, T., Jitsangiam, P., & Jaturapitakkul, C. (2021). Properties of lightweight alkali activated controlled Low-Strength material using calcium carbide residue – Fly ash mixture and containing EPS beads. Construction and Building Materials, 297, 123769. doi:10.1016/j.conbuildmat.2021.123769.

Norrarat, P., Tangchirapat, W., Songpiriyakij, S., & Jaturapitakkul, C. (2019). Evaluation of Strengths from Cement Hydration and Slag Reaction of Mortars Containing High Volume of Ground River Sand and GGBF Slag. Advances in Civil Engineering, 2019, 4892015. doi:10.1155/2019/4892015.

Castellano, C. C., Bonavetti, V. L., Donza, H. A., & Irassar, E. F. (2016). The effect of w/b and temperature on the hydration and strength of blastfurnace slag cements. Construction and Building Materials, 111, 679–688. doi:10.1016/j.conbuildmat.2015.11.001.

Rattanasak, U., & Chindaprasirt, P. (2009). Influence of NaOH solution on the synthesis of fly ash geopolymer. Minerals Engineering, 22(12), 1073–1078. doi:10.1016/j.mineng.2009.03.022.

Memon, F. A., Nuruddin, M. F., Khan, S., Shafiq, N., & Ayub, T. (2013). Effect of sodium hydroxide concentration on fresh properties and compressive strength of self-compacting geopolymer concrete. Journal of Engineering Science and Technology, 8(1), 44–56.

Lee, W. K. W., & Van Deventer, J. S. J. (2002). The effects of inorganic salt contamination on the strength and durability of geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 211(2–3), 115–126. doi:10.1016/S0927-7757(02)00239-X.

Alonso, S., & Palomo, A. (2001). Alkaline activation of metakaolin and calcium hydroxide mixtures: Influence of temperature, activator concentration and solids ratio. Materials Letters, 47(1–2), 55–62. doi:10.1016/S0167-577X(00)00212-3.

Dueramae, S., Tangchirapat, W., & Jaturapitakkul, C. (2018). Strength and heat generation of concrete using carbide lime and fly ash as a new cementitious material without Portland cement. Advanced Powder Technology, 29(3), 672–681. doi:10.1016/j.apt.2017.12.007.

Sata, V., Sathonsaowaphak, A., & Chindaprasirt, P. (2012). Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack. Cement and Concrete Composites, 34(5), 700–708. doi:10.1016/j.cemconcomp.2012.01.010.

Teymouri, M., Behfarnia, K., Shabani, A., & Saadatian, A. (2022). The Effect of Mixture Proportion on the Performance of Alkali-Activated Slag Concrete Subjected to Sulfuric Acid Attack. Materials, 15(19), 6754. doi:10.3390/ma15196754.

Yusuf, M. O., Megat Johari, M. A., Ahmad, Z. A., & Maslehuddin, M. (2015). Evaluation of Slag-Blended Alkaline-Activated Palm Oil Fuel Ash Mortar Exposed to the Sulfuric Acid Environment. Journal of Materials in Civil Engineering, 27(12), 4015058. doi:10.1061/(asce)mt.1943-5533.0001315.

Bakharev, T. (2005). Resistance of geopolymer materials to acid attack. Cement and Concrete Research, 35(4), 658–670. doi:10.1016/j.cemconres.2004.06.005.

Allahverdi, A., & Skvara, F. (2006). Sulfuric acid attack on hardened paste of geopolymer cements-part 2. Corrosion mechanism at mild and relatively low concentrations. Ceramics Silikaty, 50(1), 1.

Gijbels, K., Pontikes, Y., Samyn, P., Schreurs, S., & Schroeyers, W. (2020). Effect of NaOH content on hydration, mineralogy, porosity and strength in alkali/sulfate-activated binders from ground granulated blast furnace slag and phosphogypsum. Cement and Concrete Research, 132, 106054. doi:10.1016/j.cemconres.2020.106054.

Fu, Q., Bu, M., Zhang, Z., Xu, W., Yuan, Q., & Niu, D. (2023). Hydration Characteristics and Microstructure of Alkali-Activated Slag Concrete: A Review. Engineering, 20, 162–179. doi:10.1016/j.eng.2021.07.026.

Khater, H. M. (2012). Effect of Calcium on Geopolymerization of Aluminosilicate Wastes. Journal of Materials in Civil Engineering, 24(1), 92–101. doi:10.1061/(asce)mt.1943-5533.0000352.

Walkley, B., San Nicolas, R., Sani, M. A., Rees, G. J., Hanna, J. V., van Deventer, J. S. J., & Provis, J. L. (2016). Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors. Cement and Concrete Research, 89, 120–135. doi:10.1016/j.cemconres.2016.08.010.

Liu, Q., Zhang, J., Su, Y., & Lü, X. (2021). Variation in Polymerization Degree of C-A-S-H Gels and Its Role in Strength Development of Alkali-activated Slag Binders. Journal of Wuhan University of Technology, Materials Science Edition, 36(6), 871–879. doi:10.1007/s11595-021-2281-z.

Huang, Z., Zhou, Y., & Cui, Y. (2021). Effect of Different NaOH Solution Concentrations on Mechanical Properties and Microstructure of Alkali-Activated Blast Furnace Ferronickel Slag. Crystals, 11(11), 1301. doi:10.3390/cryst11111301.

Irshidat, M. R., Al-Nuaimi, N., & Rabie, M. (2021). Sustainable utilization of waste carbon black in alkali-activated mortar production. Case Studies in Construction Materials, 15, 743. doi:10.1016/j.cscm.2021.e00743.

Zhang, H. Y., Kodur, V., Wu, B., Cao, L., & Qi, S. L. (2016). Comparative Thermal and Mechanical Performance of Geopolymers derived from Metakaolin and Fly Ash. Journal of Materials in Civil Engineering, 28(2), 4015092. doi:10.1061/(asce)mt.1943-5533.0001359.

Tai, Z. S., Hubadillah, S. K., Othman, M. H. D., Dzahir, M. I. H. M., Koo, K. N., Tendot, N. I. S. T. I., Ismail, A. F., Rahman, M. A., Jaafar, J., & Aziz, M. H. A. (2019). Influence of pre-treatment temperature of palm oil fuel ash on the properties and performance of green ceramic hollow fiber membranes towards oil/water separation application. Separation and Purification Technology, 222, 264–277. doi:10.1016/j.seppur.2019.04.046.

Haha, M. Ben, Lothenbach, B., Le Saout, G., & Winnefeld, F. (2012). Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part II: Effect of Al2O3. Cement and Concrete Research, 42(1), 74–83. doi:10.1016/j.cemconres.2011.08.005.

El-Jazairi, B., & Illston, J. M. (1977). A simultaneous semi-isothermal method of thermogravimetry and derivative thermogravimetry, and its application to cement pastes. Cement and Concrete Research, 7(3), 247–257. doi:10.1016/0008-8846(77)90086-2.

Men, S., Tangchirapat, W., Jaturapitakkul, C., & Ban, C. C. (2022). Strength, fluid transport and microstructure of high-strength concrete incorporating high-volume ground palm oil fuel ash blended with fly ash and limestone powder. Journal of Building Engineering, 56, 104714. doi:10.1016/j.jobe.2022.104714.

Kulasuriya, C., Dias, W. P. S., Vimonsatit, V., & De Silva, P. (2020). Mechanical and Microstructural Properties of Alkali Pozzolan Cement (APC). International Journal of Civil Engineering, 18(11), 1281–1292. doi:10.1007/s40999-020-00534-3.

Guo, W., Zhang, Z., Bai, Y., Zhao, G., Sang, Z., & Zhao, Q. (2021). Development and characterization of a new multi-strength level binder system using soda residue-carbide slag as composite activator. Construction and Building Materials, 291, 123367. doi:10.1016/j.conbuildmat.2021.123367.

Chen, K., Lin, W. T., & Liu, W. (2021). Effect of NaOH concentration on properties and microstructure of a novel reactive ultra-fine fly ash geopolymer. Advanced Powder Technology, 32(8), 2929–2939. doi:10.1016/j.apt.2021.06.008.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-07-08

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Saofee Dueramae

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message