Novel Ni/ZnO Nanocomposites for the Effective Photocatalytic Degradation of Malachite Green Dye
Downloads
Doi: 10.28991/CEJ-2024-010-08-011
Full Text: PDF
[2] PaŠºdzior, K., Bilińska, L., & Ledakowicz, S. (2019). A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chemical Engineering Journal, 376, 120597. doi:10.1016/j.cej.2018.12.057.
[3] Ishikawa, Y., Ester, T., & Leader, A. (2000). Chemical economics hand book: dyes. Svi. Chemical and Health Business Services, Menlo Park, United States.
[4] . M., Shukla, S. P., & Mohan, D. (2017). Toxicity of Disperse Dyes and its Removal from Wastewater Using Various Adsorbents: A Review. Research Journal of Environmental Toxicology, 11(2), 72–89. doi:10.3923/rjet.2017.72.89.
[5] Srivastava, S., Sinha, R., & Roy, D. (2004). Toxicological effects of malachite green. Aquatic Toxicology, 66(3), 319–329. doi:10.1016/j.aquatox.2003.09.008.
[6] Saha, S., Wang, J. M., & Pal, A. (2012). Nano silver impregnation on commercial TiO2 and a comparative photocatalytic account to degrade malachite green. Separation and Purification Technology, 89, 147–159. doi:10.1016/j.seppur.2012.01.012.
[7] Sun, T., Fu, M., Xing, J., & Ge, Z. (2020). Magnetic nanoparticles encapsulated laccase nanoflowers: evaluation of enzymatic activity and reusability for degradation of malachite green. Water Science and Technology, 81(1), 29–39. doi:10.2166/wst.2020.068.
[8] Rao, K. V. K. (1995). Inhibition of DNA synthesis in primary rat hepatocyte cultures by malachite green: a new liver tumor promoter. Toxicology Letters, 81(2–3), 107–113. doi:10.1016/0378-4274(95)03413-7.
[9] Kusuma, H. S., Sholihuddin, R. I., Harsini, M., & Darmokoesoemo, H. (2016). Electrochemical degradation of malachite green dye using carbon/Tio2 electrodes. Journal of Materials and Environmental Science, 7(4), 1454–1460.
[10] Oladoye, P. O., Ajiboye, T. O., Wanyonyi, W. C., Omotola, E. O., & Oladipo, M. E. (2023). Ozonation, electrochemical, and biological methods for the remediation of malachite green dye wastewaters: a mini review. Sustainable Chemistry for the Environment, 100033. doi:10.1016/j.scenv.2023.100033.
[11] Daneshvar, N., Ayazloo, M., Khataee, A. R., & Pourhassan, M. (2007). Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp. Bioresource Technology, 98(6), 1176–1182. doi:10.1016/j.biortech.2006.05.025.
[12] Sharma, G., Naushad, M., Kumar, A., Rana, S., Sharma, S., Bhatnagar, A., J. Stadler, F., Ghfar, A. A., & Khan, M. R. (2017). Efficient removal of Coomassie brilliant blue R-250 dye using starch/poly(alginic acid-cl-acrylamide) nanohydrogel. Process Safety and Environmental Protection, 109, 301–310. doi:10.1016/j.psep.2017.04.011.
[13] Sandeep, S., Nagashree, K. L., Maiyalagan, T., & Keerthiga, G. (2018). Photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid-A comparative study in hydrothermal TiO2 and commercial TiO2. Applied Surface Science, 449, 371-379. doi:10.1016/j.apsusc.2018.02.051.
[14] Shah, J., Jan, M. R., Jamil, S., & ul Haq, A. (2014). Magnetic particles precipitated onto wheat husk for removal of methyl blue from aqueous solution. Toxicological & Environmental Chemistry, 96(2), 218–226. doi:10.1080/02772248.2014.929690.
[15] Delpiano, G. R., Tocco, D., Medda, L., Magner, E., & Salis, A. (2021). Adsorption of malachite green and alizarin red s dyes using fe-btc metal organic framework as adsorbent. International Journal of Molecular Sciences, 22(2), 788. doi:10.3390/ijms22020788.
[16] Ahmad, A. A., Ahmad, M. A., Yahaya, N. K. E. M., & Karim, J. (2021). Adsorption of malachite green by activated carbon derived from gasified Hevea brasiliensis root. Arabian Journal of Chemistry, 14(4), 103104. doi:10.1016/j.arabjc.2021.103104.
[17] Lee, J. K., Gu, J. H., Kim, M. R., & Chun, H. S. (2001). Incineration characteristics of dye sludge in a fluidized bed incinerator. Journal of Chemical Engineering of Japan, 34(2), 171–175. doi:10.1252/jcej.34.171.
[18] García-Montaño, J., Domènech, X., García-Hortal, J. A., Torrades, F., & Peral, J. (2008). The testing of several biological and chemical coupled treatments for Cibacron Red FN-R azo dye removal. Journal of Hazardous Materials, 154(1–3), 484–490. doi:10.1016/j.jhazmat.2007.10.050.
[19] Chu, W., & Ma, C. W. (2000). Quantitative prediction of direct and indirect dye ozonation kinetics. Water Research, 34(12), 3153–3160. doi:10.1016/S0043-1354(00)00043-9.
[20] Sayilkan, F., Asiltürk, M., Tatar, P., Kiraz, N., Arpaç, E., & Sayilkan, H. (2007). Photocatalytic performance of Sn-doped TiO2 nanostructured mono and double layer thin films for Malachite Green dye degradation under UV and vis-lights. Journal of Hazardous Materials, 144(1–2), 140–146. doi:10.1016/j.jhazmat.2006.10.011.
[21] Mohamed, A., Ghobara, M. M., Abdelmaksoud, M. K., & Mohamed, G. G. (2019). A novel and highly efficient photocatalytic degradation of malachite green dye via surface modified polyacrylonitrile nanofibers/biogenic silica composite nanofibers. Separation and Purification Technology, 210, 935–942. doi:10.1016/j.seppur.2018.09.014.
[22] Liu, W., Ni, J., & Yin, X. (2014). Synergy of photocatalysis and adsorption for simultaneous removal of Cr(VI) and Cr(III) with TiO2 and titanate nanotubes. Water Research, 53, 12–25. doi:10.1016/j.watres.2013.12.043.
[23] Liu, W., Sun, W., Borthwick, A. G. L., Wang, T., Li, F., & Guan, Y. (2016). Simultaneous removal of Cr(VI) and 4-chlorophenol through photocatalysis by a novel anatase/titanate nanosheet composite: Synergetic promotion effect and autosynchronous doping. Journal of Hazardous Materials, 317, 385–393. doi:10.1016/j.jhazmat.2016.06.002.
[24] Luo, Z., Qu, L., Jia, J., Wang, J., Jiang, S., Wu, Z., & Wu, X. (2018). TiO2/EDTA-rich carbon composites: Synthesis, characterization and visible-light-driven photocatalytic reduction of Cr(VI). Chinese Chemical Letters, 29(3), 547–550. doi:10.1016/j.cclet.2017.09.025.
[25] Abukhadra, M. R., Adlii, A., & Bakry, B. M. (2019). Green fabrication of bentonite/chitosan@cobalt oxide composite (BE/CH@Co) of enhanced adsorption and advanced oxidation removal of Congo red dye and Cr (VI) from water. International Journal of Biological Macromolecules, 126, 402–413. doi:10.1016/j.ijbiomac.2018.12.225.
[26] Zhao, G., Liu, L., Li, C., Zhang, T., Yan, T., Yu, J., Jiang, X., & Jiao, F. (2018). Construction of diatomite/ZnFe layered double hydroxides hybrid composites for enhanced photocatalytic degradation of organic pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 367, 302–311. doi:10.1016/j.jphotochem.2018.08.048.
[27] Shaban, M., Abukhadra, M. R., & Hamd, A. (2018). Recycling of glass in synthesis of MCM-48 mesoporous silica as catalyst support for Ni2O3 photocatalyst for Congo red dye removal. Clean Technologies and Environmental Policy, 20(1), 13–28. doi:10.1007/s10098-017-1447-5.
[28] Mohamed, F., Abukhadra, M. R., & Shaban, M. (2018). Removal of safranin dye from water using polypyrrole nanofiber/Zn-Fe layered double hydroxide nanocomposite (Ppy NF/Zn-Fe LDH) of enhanced adsorption and photocatalytic properties. Science of the Total Environment, 640–641, 352–363. doi:10.1016/j.scitotenv.2018.05.316.
[29] Wu, Q., & Zhang, Z. (2019). The preparation of self-floating Sm/N co-doped TiO2/diatomite hybrid pellet with enhanced visible-light-responsive photoactivity and reusability. Advanced Powder Technology, 30(2), 415–422. doi:10.1016/j.apt.2018.11.020.
[30] Chen, Y., Wu, Q., Liu, L., Wang, J., & Song, Y. (2019). The fabrication of self-floating Ti3+/N co-doped TiO2/diatomite granule catalyst with enhanced photocatalytic performance under visible light irradiation. Applied Surface Science, 467–468, 514–525. doi:10.1016/j.apsusc.2018.10.146.
[31] Fan, H. B., Ren, Q. F., Wang, S. L., Jin, Z., & Ding, Y. (2019). Synthesis of the Ag/Ag3PO4/diatomite composites and their enhanced photocatalytic activity driven by visible light. Journal of Alloys and Compounds, 775, 845–852. doi:10.1016/j.jallcom.2018.10.152.
[32] Nayak, N., Singha, S., Maity, J. P., Rath, P. P., Sahoo, T., & Sahoo, T. R. (2024). Photocatalytic degradation of malachite green dye under solar light irradiation using ZnO and ZnO–TiO2 nanoparticles. Journal of Materials Science: Materials in Electronics, 35(4). doi:10.1007/s10854-024-12066-w.
[33] Shao, J., Liu, B., Du, Y., Chen, N., Zhang, H., Ding, T., Li, Y., & Chang, W. (2023). Synthesis of SnO2/g-C3N4 flowerlike composites photocatalyst for enhanced photocatalytic degradation of malachite green. Journal of Molecular Structure, 1293, 136333. doi:10.1016/j.molstruc.2023.136333.
[34] Mohanty, L., Sundar Pattanayak, D., Singhal, R., Pradhan, D., & Kumar Dash, S. (2022). Enhanced photocatalytic degradation of rhodamine B and malachite green employing BiFeO3/g-C3N4 nanocomposites: An efficient visible-light photocatalyst. Inorganic Chemistry Communications, 138, 109286. doi:10.1016/j.inoche.2022.109286.
[35] Sokhansanj, A., Haghighi, M., & Shabani, M. (2023). Macroporous flowerlike Bi2O2CO3-CuBi2O4 nanoheterojunction photocatalyst for high concentrated malachite green degradation: Influence of nanocomposite composition and sonication approach. Journal of Molecular Liquids, 371, 121024. doi:10.1016/j.molliq.2022.121024.
[36] Madona, J., Sridevi, C., Indumathi, N., Gokulavani, G., & Velraj, G. (2024). A novel carbon doped CeO2/g-C3N4 heterostructure for disinfection of microorganisms and degradation of Malachite green and Amoxicillin under sunlight. Surfaces and Interfaces, 44, 103803. doi:10.1016/j.surfin.2023.103803.
[37] Shah, J., Jan, M. R., & Adnan. (2014). Catalytic activity of metal impregnated catalysts for degradation of waste polystyrene. Journal of Industrial and Engineering Chemistry, 20(5), 3604–3611. doi:10.1016/j.jiec.2013.12.055.
[38] Murcia-Salvador, A., Pellicer, J. A., Fortea, M. I., Gómez-López, V. M., Rodríguez-López, M. I., Núñez-Delicado, E., & Gabaldón, J. A. (2019). Adsorption of Direct Blue 78 using chitosan and cyclodextrins as adsorbents. Polymers, 11(6), 1003. doi:10.3390/polym11061003.
[39] Mousavi, S. M., Mahjoub, A. R., & Abazari, R. (2017). Facile green fabrication of nanostructural Ni-doped ZnO hollow sphere as an advanced photocatalytic material for dye degradation. Journal of Molecular Liquids, 242, 512–519. doi:10.1016/j.molliq.2017.07.050.
[40] Reddy, I. N., Reddy, C. V., Shim, J., Akkinepally, B., Cho, M., Yoo, K., & Kim, D. (2020). Excellent visible-light driven photocatalyst of (Al, Ni) co-doped ZnO structures for organic dye degradation. Catalysis Today, 340, 277–285. doi:10.1016/j.cattod.2018.07.030.
[41] Rabie, A. M., Abukhadra, M. R., Rady, A. M., Ahmed, S. A., Labena, A., Mohamed, H. S. H., Betiha, M. A., & Shim, J. J. (2020). Instantaneous photocatalytic degradation of malachite green dye under visible light using novel green Co–ZnO/algae composites. Research on Chemical Intermediates, 46(3), 1955–1973. doi:10.1007/s11164-019-04074-x.
[42] Saharan, P., Chaudhary, G. R., Lata, S., Mehta, S. K., & Mor, S. (2015). Ultra fast and effective treatment of dyes from water with the synergistic effect of Ni doped ZnO nanoparticles and ultrasonication. Ultrasonics Sonochemistry, 22, 317–325. doi:10.1016/j.ultsonch.2014.07.004.
[43] Chen, Y., Zhang, Y., Liu, C., Lu, A., & Zhang, W. (2012). Photodegradation of malachite green by nanostructured Bi2WO 6 visible light-induced photocatalyst. International Journal of Photoenergy, 2012. doi:10.1155/2012/510158.
[44] Gar Alalm, M., Tawfik, A., & Ookawara, S. (2015). Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pesticides industry wastewater: Operational conditions, kinetics, and costs. Journal of Water Process Engineering, 8, 55–63. doi:10.1016/j.jwpe.2015.09.007.
[45] Shah, J., Jan, M. R., & Khitab, F. (2018). Sonophotocatalytic degradation of textile dyes over Cu impregnated ZnO catalyst in aqueous solution. Process Safety and Environmental Protection, 116, 149–158. doi:10.1016/j.psep.2018.01.008.
[46] Ren, Q., Kong, C., Chen, Z., Zhou, J., Li, W., Li, D., Cui, Z., Xue, Y., & Lu, Y. (2021). Ultrasonic assisted electrochemical degradation of malachite green in wastewater. Microchemical Journal, 164, 106059. doi:10.1016/j.microc.2021.106059.
[47] Ho, Y. S. (2004). Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics, 59(1), 171–177. doi:10.1023/B:SCIE.0000013305.99473.cf.
[48] Ho, Y. S., & Mckay, G. (1998). Kinetic Models for the Sorption of Dye from Aqueous Solution by Wood. Process Safety and Environmental Protection, 76(2), 183–191. doi:10.1205/095758298529326.
[49] Eskizeybek, V., Sari, F., Gülce, H., Gülce, A., & Avci, A. (2012). Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Applied Catalysis B: Environmental, 119–120, 197–206. doi:10.1016/j.apcatb.2012.02.034.
[50] Farhat, O. F., Halim, M. M., Ahmed, N. M., & Qaeed, M. A. (2016). ZnO nanofiber (NFs) growth from ZnO nanowires (NWs) by controlling growth temperature on flexible Teflon substrate by CBD technique for UV photodetector. Superlattices and Microstructures, 100, 1120–1127. doi:10.1016/j.spmi.2016.10.076.
[51] Mohamed, R. M., McKinney, D., Kadi, M. W., Mkhalid, I. A., & Sigmund, W. (2016). Platinum/zinc oxide nanoparticles: Enhanced photocatalysts degrade malachite green dye under visible light conditions. Ceramics International, 42(8), 9375–9381. doi:10.1016/j.ceramint.2016.02.147.
[52] Chauhan, N., Singh, V., Kumar, S., Sirohi, K., & Siwatch, S. (2019). Synthesis of nitrogen- and cobalt-doped rod-like mesoporous ZnO nanostructures to study their photocatalytic activity. Journal of Sol-Gel Science and Technology, 91(3), 567–577. doi:10.1007/s10971-019-05059-3.
[53] Shah, A. P., Jain, S., Mokale, V. J., & Shimpi, N. G. (2019). High performance visible light photocatalysis of electrospun PAN/ZnO hybrid nanofibers. Journal of Industrial and Engineering Chemistry, 77, 154–163. doi:10.1016/j.jiec.2019.04.030.
[54] El Haddad, M. E., Regti, A., Laamari, M. R., Mamouni, R., & Saffaj, N. (2014). Use of fenton reagent as advanced oxidative process for removing textile dyes from aqueous solutions. Journal of Materials and Environmental Science, 5(3), 667–674.
[55] Li, J. T., & Song, Y. L. (2010). Degradation of AR 97 aqueous solution by combination of ultrasound and fenton reagent. Environmental Progress & Sustainable Energy, 29(1), 101–106. doi:10.1002/ep.10375.
[56] Senapati, S., Srivastava, S. K., & Singh, S. B. (2012). Synthesis, characterization and photocatalytic activity of magnetically separable hexagonal Ni/ZnO nanostructure. Nanoscale, 4(20), 6604–6612. doi:10.1039/c2nr31831h.
[57] Hammouche, J., Daoudi, K., Columbus, S., Ziad, R., Ramachandran, K., & Gaidi, M. (2021). Structural and morphological optimization of Ni doped ZnO decorated silicon nanowires for photocatalytic degradation of methylene blue. Inorganic Chemistry Communications, 131, 108763. doi:10.1016/j.inoche.2021.108763.
[58] Azfar, A. K., Kasim, M. F., Lokman, I. M., Rafaie, H. A., & Mastuli, M. S. (2020). Comparative study on photocatalytic activity of transition metals (Ag and Ni)doped ZnO nanomaterials synthesized via sol–gel method. Royal Society Open Science, 7(2), 191590. doi:10.1098/rsos.191590.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.