Novel Ni/ZnO Nanocomposites for the Effective Photocatalytic Degradation of Malachite Green Dye

. Adnan, . Nisar, Rahim Shah, Farah Muhammad Zada, Behramand Khan, Shaukat Aziz, Najeeb Ur Rehman, Ho Soonmin, Nisar Ahmad, Mansoor Khan, . Hanzala

Abstract


Water scarcity threatens human civilization because of rapid industrialization's damage to freshwater sources. Pollutants like dyes, which are frequently found in the paper, leather, food, plastics, textile, and cosmetics industries, must be removed to preserve water. In the present study, Zinc oxide nanocomposites impregnated with nickel (Ni/ZnO) were prepared using a wet impregnation technique. These novel materials were investigated for their ability to photocatalytically degrade malachite green (MG) under the irradiation of visible. The synthesized nanocomposite catalyst was characterized by various analytical techniques, including SEM, EDX, XRD, and BET methods of surface analysis, and revealed a high surface area of 192.88 m2g-1 with an average size range from 88-354 nm. EDX results showed efficient doping of Ni (28.9%). The composites were then used under the influence of a visible light source to degrade MG dye. The investigation also assessed the degradation of MG using a photo-Fenton reagent. Factors such as catalyst dosage, H2O2 levels, pH, and duration were optimized to understand their impact in both degradation studies. The synthesized catalyst showed stunning photocatalytic activities, as 99.4% of the 60 µg.ml-1of MG was degraded in 40 min with 100 mg of Ni/ZnO at pH 8. Ni/ZnO had a good application prospect for MG degrading and can be used as a potential photocatalyst.

 

Doi: 10.28991/CEJ-2024-010-08-011

Full Text: PDF


Keywords


Ni/ZnO; Malachite Green; Water Pollution; Fenton Reagent; Wastewater Treatment; Photodegradation.

References


Low, W., S. Kevin, and H. Lee, "Adsorption of zinc, copper, and iron from synthetic wastewater using watermelon (Citrullus Lanatus), Mango (Mangifera Indica L) and rambutan peels (Nephelium Lappaceum L) as bio-sorbents". Journal of Engineering Science and Technology, 2023. 18(1): 386-405.

Paździor, K., Bilińska, L., & Ledakowicz, S. (2019). A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chemical Engineering Journal, 376, 120597. doi:10.1016/j.cej.2018.12.057.

Ishikawa, Y., Ester, T., & Leader, A. (2000). Chemical economics hand book: dyes. Svi. Chemical and Health Business Services, Menlo Park, United States.

. M., Shukla, S. P., & Mohan, D. (2017). Toxicity of Disperse Dyes and its Removal from Wastewater Using Various Adsorbents: A Review. Research Journal of Environmental Toxicology, 11(2), 72–89. doi:10.3923/rjet.2017.72.89.

Srivastava, S., Sinha, R., & Roy, D. (2004). Toxicological effects of malachite green. Aquatic Toxicology, 66(3), 319–329. doi:10.1016/j.aquatox.2003.09.008.

Saha, S., Wang, J. M., & Pal, A. (2012). Nano silver impregnation on commercial TiO2 and a comparative photocatalytic account to degrade malachite green. Separation and Purification Technology, 89, 147–159. doi:10.1016/j.seppur.2012.01.012.

Sun, T., Fu, M., Xing, J., & Ge, Z. (2020). Magnetic nanoparticles encapsulated laccase nanoflowers: evaluation of enzymatic activity and reusability for degradation of malachite green. Water Science and Technology, 81(1), 29–39. doi:10.2166/wst.2020.068.

Rao, K. V. K. (1995). Inhibition of DNA synthesis in primary rat hepatocyte cultures by malachite green: a new liver tumor promoter. Toxicology Letters, 81(2–3), 107–113. doi:10.1016/0378-4274(95)03413-7.

Kusuma, H. S., Sholihuddin, R. I., Harsini, M., & Darmokoesoemo, H. (2016). Electrochemical degradation of malachite green dye using carbon/Tio2 electrodes. Journal of Materials and Environmental Science, 7(4), 1454–1460.

Oladoye, P. O., Ajiboye, T. O., Wanyonyi, W. C., Omotola, E. O., & Oladipo, M. E. (2023). Ozonation, electrochemical, and biological methods for the remediation of malachite green dye wastewaters: a mini review. Sustainable Chemistry for the Environment, 100033. doi:10.1016/j.scenv.2023.100033.

Daneshvar, N., Ayazloo, M., Khataee, A. R., & Pourhassan, M. (2007). Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp. Bioresource Technology, 98(6), 1176–1182. doi:10.1016/j.biortech.2006.05.025.

Sharma, G., Naushad, M., Kumar, A., Rana, S., Sharma, S., Bhatnagar, A., J. Stadler, F., Ghfar, A. A., & Khan, M. R. (2017). Efficient removal of Coomassie brilliant blue R-250 dye using starch/poly(alginic acid-cl-acrylamide) nanohydrogel. Process Safety and Environmental Protection, 109, 301–310. doi:10.1016/j.psep.2017.04.011.

Sandeep, S., Nagashree, K. L., Maiyalagan, T., & Keerthiga, G. (2018). Photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid-A comparative study in hydrothermal TiO2 and commercial TiO2. Applied Surface Science, 449, 371-379. doi:10.1016/j.apsusc.2018.02.051.

Shah, J., Jan, M. R., Jamil, S., & ul Haq, A. (2014). Magnetic particles precipitated onto wheat husk for removal of methyl blue from aqueous solution. Toxicological & Environmental Chemistry, 96(2), 218–226. doi:10.1080/02772248.2014.929690.

Delpiano, G. R., Tocco, D., Medda, L., Magner, E., & Salis, A. (2021). Adsorption of malachite green and alizarin red s dyes using fe-btc metal organic framework as adsorbent. International Journal of Molecular Sciences, 22(2), 788. doi:10.3390/ijms22020788.

Ahmad, A. A., Ahmad, M. A., Yahaya, N. K. E. M., & Karim, J. (2021). Adsorption of malachite green by activated carbon derived from gasified Hevea brasiliensis root. Arabian Journal of Chemistry, 14(4), 103104. doi:10.1016/j.arabjc.2021.103104.

Lee, J. K., Gu, J. H., Kim, M. R., & Chun, H. S. (2001). Incineration characteristics of dye sludge in a fluidized bed incinerator. Journal of Chemical Engineering of Japan, 34(2), 171–175. doi:10.1252/jcej.34.171.

García-Montaño, J., Domènech, X., García-Hortal, J. A., Torrades, F., & Peral, J. (2008). The testing of several biological and chemical coupled treatments for Cibacron Red FN-R azo dye removal. Journal of Hazardous Materials, 154(1–3), 484–490. doi:10.1016/j.jhazmat.2007.10.050.

Chu, W., & Ma, C. W. (2000). Quantitative prediction of direct and indirect dye ozonation kinetics. Water Research, 34(12), 3153–3160. doi:10.1016/S0043-1354(00)00043-9.

Sayilkan, F., Asiltürk, M., Tatar, P., Kiraz, N., Arpaç, E., & Sayilkan, H. (2007). Photocatalytic performance of Sn-doped TiO2 nanostructured mono and double layer thin films for Malachite Green dye degradation under UV and vis-lights. Journal of Hazardous Materials, 144(1–2), 140–146. doi:10.1016/j.jhazmat.2006.10.011.

Mohamed, A., Ghobara, M. M., Abdelmaksoud, M. K., & Mohamed, G. G. (2019). A novel and highly efficient photocatalytic degradation of malachite green dye via surface modified polyacrylonitrile nanofibers/biogenic silica composite nanofibers. Separation and Purification Technology, 210, 935–942. doi:10.1016/j.seppur.2018.09.014.

Liu, W., Ni, J., & Yin, X. (2014). Synergy of photocatalysis and adsorption for simultaneous removal of Cr(VI) and Cr(III) with TiO2 and titanate nanotubes. Water Research, 53, 12–25. doi:10.1016/j.watres.2013.12.043.

Liu, W., Sun, W., Borthwick, A. G. L., Wang, T., Li, F., & Guan, Y. (2016). Simultaneous removal of Cr(VI) and 4-chlorophenol through photocatalysis by a novel anatase/titanate nanosheet composite: Synergetic promotion effect and autosynchronous doping. Journal of Hazardous Materials, 317, 385–393. doi:10.1016/j.jhazmat.2016.06.002.

Luo, Z., Qu, L., Jia, J., Wang, J., Jiang, S., Wu, Z., & Wu, X. (2018). TiO2/EDTA-rich carbon composites: Synthesis, characterization and visible-light-driven photocatalytic reduction of Cr(VI). Chinese Chemical Letters, 29(3), 547–550. doi:10.1016/j.cclet.2017.09.025.

Abukhadra, M. R., Adlii, A., & Bakry, B. M. (2019). Green fabrication of bentonite/chitosan@cobalt oxide composite (BE/CH@Co) of enhanced adsorption and advanced oxidation removal of Congo red dye and Cr (VI) from water. International Journal of Biological Macromolecules, 126, 402–413. doi:10.1016/j.ijbiomac.2018.12.225.

Zhao, G., Liu, L., Li, C., Zhang, T., Yan, T., Yu, J., Jiang, X., & Jiao, F. (2018). Construction of diatomite/ZnFe layered double hydroxides hybrid composites for enhanced photocatalytic degradation of organic pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 367, 302–311. doi:10.1016/j.jphotochem.2018.08.048.

Shaban, M., Abukhadra, M. R., & Hamd, A. (2018). Recycling of glass in synthesis of MCM-48 mesoporous silica as catalyst support for Ni2O3 photocatalyst for Congo red dye removal. Clean Technologies and Environmental Policy, 20(1), 13–28. doi:10.1007/s10098-017-1447-5.

Mohamed, F., Abukhadra, M. R., & Shaban, M. (2018). Removal of safranin dye from water using polypyrrole nanofiber/Zn-Fe layered double hydroxide nanocomposite (Ppy NF/Zn-Fe LDH) of enhanced adsorption and photocatalytic properties. Science of the Total Environment, 640–641, 352–363. doi:10.1016/j.scitotenv.2018.05.316.

Wu, Q., & Zhang, Z. (2019). The preparation of self-floating Sm/N co-doped TiO2/diatomite hybrid pellet with enhanced visible-light-responsive photoactivity and reusability. Advanced Powder Technology, 30(2), 415–422. doi:10.1016/j.apt.2018.11.020.

Chen, Y., Wu, Q., Liu, L., Wang, J., & Song, Y. (2019). The fabrication of self-floating Ti3+/N co-doped TiO2/diatomite granule catalyst with enhanced photocatalytic performance under visible light irradiation. Applied Surface Science, 467–468, 514–525. doi:10.1016/j.apsusc.2018.10.146.

Fan, H. B., Ren, Q. F., Wang, S. L., Jin, Z., & Ding, Y. (2019). Synthesis of the Ag/Ag3PO4/diatomite composites and their enhanced photocatalytic activity driven by visible light. Journal of Alloys and Compounds, 775, 845–852. doi:10.1016/j.jallcom.2018.10.152.

Nayak, N., Singha, S., Maity, J. P., Rath, P. P., Sahoo, T., & Sahoo, T. R. (2024). Photocatalytic degradation of malachite green dye under solar light irradiation using ZnO and ZnO–TiO2 nanoparticles. Journal of Materials Science: Materials in Electronics, 35(4). doi:10.1007/s10854-024-12066-w.

Shao, J., Liu, B., Du, Y., Chen, N., Zhang, H., Ding, T., Li, Y., & Chang, W. (2023). Synthesis of SnO2/g-C3N4 flowerlike composites photocatalyst for enhanced photocatalytic degradation of malachite green. Journal of Molecular Structure, 1293, 136333. doi:10.1016/j.molstruc.2023.136333.

Mohanty, L., Sundar Pattanayak, D., Singhal, R., Pradhan, D., & Kumar Dash, S. (2022). Enhanced photocatalytic degradation of rhodamine B and malachite green employing BiFeO3/g-C3N4 nanocomposites: An efficient visible-light photocatalyst. Inorganic Chemistry Communications, 138, 109286. doi:10.1016/j.inoche.2022.109286.

Sokhansanj, A., Haghighi, M., & Shabani, M. (2023). Macroporous flowerlike Bi2O2CO3-CuBi2O4 nanoheterojunction photocatalyst for high concentrated malachite green degradation: Influence of nanocomposite composition and sonication approach. Journal of Molecular Liquids, 371, 121024. doi:10.1016/j.molliq.2022.121024.

Madona, J., Sridevi, C., Indumathi, N., Gokulavani, G., & Velraj, G. (2024). A novel carbon doped CeO2/g-C3N4 heterostructure for disinfection of microorganisms and degradation of Malachite green and Amoxicillin under sunlight. Surfaces and Interfaces, 44, 103803. doi:10.1016/j.surfin.2023.103803.

Shah, J., Jan, M. R., & Adnan. (2014). Catalytic activity of metal impregnated catalysts for degradation of waste polystyrene. Journal of Industrial and Engineering Chemistry, 20(5), 3604–3611. doi:10.1016/j.jiec.2013.12.055.

Murcia-Salvador, A., Pellicer, J. A., Fortea, M. I., Gómez-López, V. M., Rodríguez-López, M. I., Núñez-Delicado, E., & Gabaldón, J. A. (2019). Adsorption of Direct Blue 78 using chitosan and cyclodextrins as adsorbents. Polymers, 11(6), 1003. doi:10.3390/polym11061003.

Mousavi, S. M., Mahjoub, A. R., & Abazari, R. (2017). Facile green fabrication of nanostructural Ni-doped ZnO hollow sphere as an advanced photocatalytic material for dye degradation. Journal of Molecular Liquids, 242, 512–519. doi:10.1016/j.molliq.2017.07.050.

Reddy, I. N., Reddy, C. V., Shim, J., Akkinepally, B., Cho, M., Yoo, K., & Kim, D. (2020). Excellent visible-light driven photocatalyst of (Al, Ni) co-doped ZnO structures for organic dye degradation. Catalysis Today, 340, 277–285. doi:10.1016/j.cattod.2018.07.030.

Rabie, A. M., Abukhadra, M. R., Rady, A. M., Ahmed, S. A., Labena, A., Mohamed, H. S. H., Betiha, M. A., & Shim, J. J. (2020). Instantaneous photocatalytic degradation of malachite green dye under visible light using novel green Co–ZnO/algae composites. Research on Chemical Intermediates, 46(3), 1955–1973. doi:10.1007/s11164-019-04074-x.

Saharan, P., Chaudhary, G. R., Lata, S., Mehta, S. K., & Mor, S. (2015). Ultra fast and effective treatment of dyes from water with the synergistic effect of Ni doped ZnO nanoparticles and ultrasonication. Ultrasonics Sonochemistry, 22, 317–325. doi:10.1016/j.ultsonch.2014.07.004.

Chen, Y., Zhang, Y., Liu, C., Lu, A., & Zhang, W. (2012). Photodegradation of malachite green by nanostructured Bi2WO 6 visible light-induced photocatalyst. International Journal of Photoenergy, 2012. doi:10.1155/2012/510158.

Gar Alalm, M., Tawfik, A., & Ookawara, S. (2015). Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pesticides industry wastewater: Operational conditions, kinetics, and costs. Journal of Water Process Engineering, 8, 55–63. doi:10.1016/j.jwpe.2015.09.007.

Shah, J., Jan, M. R., & Khitab, F. (2018). Sonophotocatalytic degradation of textile dyes over Cu impregnated ZnO catalyst in aqueous solution. Process Safety and Environmental Protection, 116, 149–158. doi:10.1016/j.psep.2018.01.008.

Ren, Q., Kong, C., Chen, Z., Zhou, J., Li, W., Li, D., Cui, Z., Xue, Y., & Lu, Y. (2021). Ultrasonic assisted electrochemical degradation of malachite green in wastewater. Microchemical Journal, 164, 106059. doi:10.1016/j.microc.2021.106059.

Ho, Y. S. (2004). Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics, 59(1), 171–177. doi:10.1023/B:SCIE.0000013305.99473.cf.

Ho, Y. S., & Mckay, G. (1998). Kinetic Models for the Sorption of Dye from Aqueous Solution by Wood. Process Safety and Environmental Protection, 76(2), 183–191. doi:10.1205/095758298529326.

Eskizeybek, V., Sari, F., Gülce, H., Gülce, A., & Avci, A. (2012). Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Applied Catalysis B: Environmental, 119–120, 197–206. doi:10.1016/j.apcatb.2012.02.034.

Farhat, O. F., Halim, M. M., Ahmed, N. M., & Qaeed, M. A. (2016). ZnO nanofiber (NFs) growth from ZnO nanowires (NWs) by controlling growth temperature on flexible Teflon substrate by CBD technique for UV photodetector. Superlattices and Microstructures, 100, 1120–1127. doi:10.1016/j.spmi.2016.10.076.

Mohamed, R. M., McKinney, D., Kadi, M. W., Mkhalid, I. A., & Sigmund, W. (2016). Platinum/zinc oxide nanoparticles: Enhanced photocatalysts degrade malachite green dye under visible light conditions. Ceramics International, 42(8), 9375–9381. doi:10.1016/j.ceramint.2016.02.147.

Chauhan, N., Singh, V., Kumar, S., Sirohi, K., & Siwatch, S. (2019). Synthesis of nitrogen- and cobalt-doped rod-like mesoporous ZnO nanostructures to study their photocatalytic activity. Journal of Sol-Gel Science and Technology, 91(3), 567–577. doi:10.1007/s10971-019-05059-3.

Shah, A. P., Jain, S., Mokale, V. J., & Shimpi, N. G. (2019). High performance visible light photocatalysis of electrospun PAN/ZnO hybrid nanofibers. Journal of Industrial and Engineering Chemistry, 77, 154–163. doi:10.1016/j.jiec.2019.04.030.

El Haddad, M. E., Regti, A., Laamari, M. R., Mamouni, R., & Saffaj, N. (2014). Use of fenton reagent as advanced oxidative process for removing textile dyes from aqueous solutions. Journal of Materials and Environmental Science, 5(3), 667–674.

Li, J. T., & Song, Y. L. (2010). Degradation of AR 97 aqueous solution by combination of ultrasound and fenton reagent. Environmental Progress & Sustainable Energy, 29(1), 101–106. doi:10.1002/ep.10375.

Senapati, S., Srivastava, S. K., & Singh, S. B. (2012). Synthesis, characterization and photocatalytic activity of magnetically separable hexagonal Ni/ZnO nanostructure. Nanoscale, 4(20), 6604–6612. doi:10.1039/c2nr31831h.

Hammouche, J., Daoudi, K., Columbus, S., Ziad, R., Ramachandran, K., & Gaidi, M. (2021). Structural and morphological optimization of Ni doped ZnO decorated silicon nanowires for photocatalytic degradation of methylene blue. Inorganic Chemistry Communications, 131, 108763. doi:10.1016/j.inoche.2021.108763.

Azfar, A. K., Kasim, M. F., Lokman, I. M., Rafaie, H. A., & Mastuli, M. S. (2020). Comparative study on photocatalytic activity of transition metals (Ag and Ni)doped ZnO nanomaterials synthesized via sol–gel method. Royal Society Open Science, 7(2), 191590. doi:10.1098/rsos.191590.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-08-011

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Adnan Adnan, Nisar Nisar, Rahim Shah, Farah Muhammad Zada, Behramand Khan, Shaukat Aziz, Nisar Ahmad, Mansoor Khan, Hanzala Hanzala

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message