The Impact of Shear Reinforcement Amount and Arrangement on the Shear Capacity of Shallow RC Beams: An Experimental Study

Ahmed A. Soliman, Dina M. Mansour, Ayman H. Khalil, Ahmed Ebid

Abstract


This study investigates the impact of shear reinforcement amount and arrangement on the shear capacity of shallow/wide RC beams. Seven specimens of shallow/wide beams with different ultimate shear reinforcement stress (μ.Fys), longitudinal spacing to depth ratio (S/d), and transversal spacing to depth ratio (S’/d) were tested under a monotonic three-point bending test. All the specimens were designed to fail at shearing. The results showed that the shear reinforcement was fully functioning until it yielded; also, the amount of shear reinforcement had the major impact on the shear capacity; in addition, the transverse spacing had more influence on the shear capacity than the longitudinal spacing. The measured shear capacities were compared to six design codes, in which the results ranged from 95% to 110%, with the Japanese code (JSCE) being the closest to the experimental results. Two AI-based predicting equations, “Genetic Programming” (GP) and “Evolutionary Polynomial Regression” (EPR), were also compared to the experimental, with accuracies of 78% and 86% of the measured capacities, respectively. Initial stiffness, final stiffness, dissipated energy, and ductility were all discussed for the seven specimens, with ultimate shear reinforcement stress being the most impactful on the total shear capacity of the wide beams.

 

Doi: 10.28991/CEJ-2023-09-12-013

Full Text: PDF


Keywords


Wide Beams; Shallow Beams; Stirrups Spacing; Shear Capacity; Genetic Programing; Evolutionary Polynomial Regression.

References


Lubell A, Sherwood T, Bentz E, & Collins MP. (2004). Safe shear design of large, wide beams. Concrete International, 26(1), 66–78.

Sherwood, E. G., Lubell, A. S., Bentz, E. C., & Collins, M. P. (2007). One-Way Shear Strength of Thick Slabs and Wide Beams. (2006). ACI Structural Journal, 103(6), 794-802. doi:10.14359/18229.

Soliman, A. A., Mansour, D. M., Khalil, A. H., & Ebid, A. (2023). The Impact of Aspect Ratio, Characteristic Strength and Compression Rebars on the Shear Capacity of Shallow RC Beams. Civil Engineering Journal (Iran), 9(9), 2259–2271. doi:10.28991/CEJ-2023-09-09-012.

Serna-Ros, P., Fernandez-Prada, M. A., Miguel-Sosa, P., & Debb, O. A. R. (2002). Influence of stirrup distribution and support width on the shear strength of reinforced concrete wide beams. Magazine of Concrete Research, 54(3), 181–191. doi:10.1680/macr.2002.54.3.181.

Wang, G., Zhu, F., & Yang, C. (2020). Experimental study on Shear behaviors of RC beams strengthened with ECC layers. IOP Conference Series: Materials Science and Engineering, 780(4), 042024. doi:10.1088/1757-899X/780/4/042024.

Morsy, N. S., Sherif, A. G., Shoeib, A. E., & Agamy, M. H. (2018). Experimental Study of Enhancing the Shear Strength of Hidden/Shallow Beams by Using Shear Reinforcement. Proceedings of the 3rd World Congress on Civil, Structural, and Environmental Engineering, Budapest, Hungary. doi:10.11159/icsenm18.116.

Taha, M. G., & Abbas, A. L. (2021). Effect of Longitudinal Maximum Spacing of Shear Reinforcement for wide Reinforced Concrete Beams. IOP Conference Series: Materials Science and Engineering, 1076(1), 012118. doi:10.1088/1757-899x/1076/1/012118.

de Sousa, A. M. D., Lantsoght, E. O. L., & El Debs, M. K. (2021). One-way shear strength of wide reinforced concrete members without stirrups. Structural Concrete, 22(2), 968–992. doi:10.1002/suco.202000034.

de Sousa, A. M. D., Lantsoght, E. O. L., & El Debs, M. K. (2023). Transition between Shear and Punching in Reinforced Concrete Slabs: Review and Predictions with ACI Code Expressions. ACI Structural Journal, 120(2), 115–128. doi:10.14359/51738350.

de Sousa, A. M. D., Lantsoght, E. O. L., & El Debs, M. K. (2023). Failure mechanism of one-way slabs under concentrated loads after local reinforcement yielding. Engineering Structures, 291, 116396. doi:10.1016/j.engstruct.2023.116396.

Moubarak, A. M. R., Elwardany, H., Abu El-hassan, K., & El-Din Taher, S. (2022). Shear strengthening of wide-shallow beams by inserted fasteners. Engineering Structures, 268. doi:10.1016/j.engstruct.2022.114554.

Elansary, A. A., Elnazlawy, Y. Y., & Abdalla, H. A. (2022). Shear behaviour of concrete wide beams with spiral lateral reinforcement. Australian Journal of Civil Engineering, 20(1), 174–194. doi:10.1080/14488353.2021.1942405.

Mohammed, A. S., Al-Zuheriy, A. S. J., & Abdulkareem, B. F. (2023). An Experimental Study to Predict a New Formula for Calculating the Deflection in Wide Concrete Beams Reinforced with Shear Steel Plates. International Journal of Engineering, 36(2), 360–371. doi:10.5829/ije.2023.36.02b.15.

Khalil, A. E. H., Etman, E., Atta, A., Baraghith, A., & Behiry, R. (2019). The Effective Width in Shear Design of Wide-shallow Beams: A Comparative Study. KSCE Journal of Civil Engineering, 23(4), 1670–1681. doi:10.1007/s12205-019-0830-7.

Mahmoud, S. M., Mabrouk, R. T. S., & Kassem, M. E. (2021). Behavior of RC wide beams under eccentric loading. Civil Engineering Journal (Iran), 7(11), 1880–1897. doi:10.28991/cej-2021-03091766.

Ebid, A. M., & Deifalla, A. (2021). Prediction of shear strength of FRP reinforced beams with and without stirrups using (GP) technique. Ain Shams Engineering Journal, 12(3), 2493–2510. doi:10.1016/j.asej.2021.02.006.

Abdul-Salam, B., Farghaly, A. S., & Benmokrane, B. (2016). Mechanisms of shear resistance of one-way concrete slabs reinforced with FRP bars. Construction and Building Materials, 127, 959–970. doi:10.1016/j.conbuildmat.2016.10.015.

Al-Hamrani, A., & Alnahhal, W. (2022). Shear behaviour of one-way high strength plain and FRC slabs reinforced with basalt FRP bars. Composite Structures, 302. doi:10.1016/j.compstruct.2022.116234.

El-Sayed, A. K., Al-Zaid, R. A., Al-Negheimish, A. I., Shuraim, A. B., & Alhozaimy, A. M. (2014). Long-term behavior of wide shallow RC beams strengthened with externally bonded CFRP plates. Construction and Building Materials, 51, 473–483. doi:10.1016/j.conbuildmat.2013.10.055.

Conforti, A., Minelli, F., Tinini, A., & Plizzari, G. A. (2015). Influence of polypropylene fibre reinforcement and width-to-effective depth ratio in wide-shallow beams. Engineering Structures, 88, 12–21. doi:10.1016/j.engstruct.2015.01.037.

Odero, B. J., Mutuku, R. N., Nyomboi, T., & Gariy, Z. A. (2022). Shear Performance of Concrete Beams with a Maximum Size of Recycled Concrete Aggregate. Advances in Materials Science and Engineering, 6804155. doi:10.1155/2022/6804155.

Sagheer, A. M., & Tabsh, S. W. (2023). Shear Strength of Concrete Beams without Stirrups Made with Recycled Coarse Aggregate. Buildings, 13(1), 75. doi:10.3390/buildings13010075.

Cheng, K., Du, Y., Wang, H., Liu, R., Sun, Y., Lu, Z., & Chen, L. (2023). Experimental Study of the Shear Performance of Combined Concrete–ECC Beams without Web Reinforcement. Materials, 16(16), 5706. doi:10.3390/ma16165706.

Yu, Y., Zhao, X., Xu, J., Chen, C., Deresa, S., & Zhang, J. (2020). Machine Learning-Based Evaluation of Shear Capacity of Recycled Aggregate Concrete Beams. Materials, 13(20), 4552. doi:10.3390/ma13204552.

Lantsoght, E., van der Veen, C., & Walraven, J. (2011). Experimental Study of Shear Capacity of Reinforced Concrete Slabs. Structures Congress 2011, 152-163. doi:10.1061/41171(401)15.

Lantsoght, E. O. L., Van Der Veen, C., & Walraven, J. C. (2014). Shear in One-Way Slabs under Concentrated Load Close to Support. (2013). ACI Structural Journal, 110(2), 275-284. doi:10.14359/51684407.

Alluqmani, A. E. (2020). Effect of the transversal-spacing of stirrup-legs on the behavior and strength of shallow concealed RC beams. Journal of Engineering, Design and Technology, 19(4), 932–942. doi:10.1108/JEDT-06-2020-0224.

Koo, S., Shin, D., & Kim, C. (2021). Application of principal component analysis approach to predict shear strength of reinforced concrete beams with stirrups. Materials, 14(13), 3471. doi:10.3390/ma14133471.

Fan, X., Wang, S., & Zhang, Z. (2020). A Study of Size Effect in Shear Resistance of Reinforced Concrete Beams Based on Machine Learning. IOP Conference Series: Earth and Environmental Science, 455(1), 12099. doi:10.1088/1755-1315/455/1/012099.

De Domenico, D., Quaranta, G., Zeng, Q., & Monti, G. (2022). Machine-learning-enhanced variable-angle truss model to predict the shear capacity of RC elements with transverse reinforcement. Procedia Structural Integrity, 44, 1688–1695. doi:10.1016/j.prostr.2023.01.216.

Wakjira, T. G., Ebead, U., & Alam, M. S. (2022). Machine learning-based shear capacity prediction and reliability analysis of shear-critical RC beams strengthened with inorganic composites. Case Studies in Construction Materials, 16. doi:10.1016/j.cscm.2022.e01008.

Wang, S., Ma, C., Wang, W., Hou, X., Xiao, X., Zhang, Z., Liu, X., & Liao, J. J. (2023). Prediction of Failure Modes and Minimum Characteristic Value of Transverse Reinforcement of RC Beams Based on Interpretable Machine Learning. Buildings, 13(2), 469. doi:10.3390/buildings13020469.

Soliman, A. A., Mansour, D. M., Ebid, A., & Khalil, A. H. (2023). Shallow and Wide RC Beams, Definition, Capacity and Structural Behavior – Gap Study. The Open Civil Engineering Journal, 17(1), 1-11. doi:10.2174/18741495-v17-e230725-2023-28.

ACI 318-89. (2019). Building Code Requirements for Structural Concrete. American Concrete Institute (ACI), Michigan, United States.

BS 8110-1. (1997). Structural use of concrete. British Standards Institution (BSI), London, United Kingdom.

ES EN 1992-1-1. (2004). Eurocode2: Design of concrete structures - Part 1-1: General rules and rules for buildings. European Committee for Standardization (CEN), Brussels, Belgium.

IS 456. (2000). Plain and Reinforced Concrete-Code of Practice (4th Ed.). Bureau of Indian Standards, New Delhi, India.

ECP-203. (2018). Egyptian Code for Design and Construction of Reinforced Concrete Structures. National Housing and Building Research Center, Cairo, Egypt.

Japan Society of Civil Engineers (JSCE). (2002). Standard Specifications for Concrete Structures. JSCE Guideline for Concrete No. 15, Japan Society of Civil Engineers, Tokyo, Japan.

Ebid, A. M., & Deifalla, A. (2021). Prediction of shear strength of FRP reinforced beams with and without stirrups using (GP) technique. Ain Shams Engineering Journal, 12(3), 2493–2510. doi:10.1016/j.asej.2021.02.006.

Ebid, A. M., Deifalla, A. F., & Mahdi, H. A. (2022). Evaluating Shear Strength of Light-Weight and Normal-Weight Concretes through Artificial Intelligence. Sustainability (Switzerland), 14(21), 14010. doi:10.3390/su142114010.

Ramadan, M., Ors, D. M., Farghal, A. M., Afifi, A., Zaher, A. H., & Ebid, A. M. (2023). Punching shear behavior of HSC & UHPC post tensioned flat slabs – An experimental study. Results in Engineering, 17, 100882. doi:10.1016/j.rineng.2023.100882.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-12-013

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Ahmed Mohamed Abdelmoniem Soliman, Dina Mahmoud Mansour, Ahmed Ebid, Ayman Hussein Khalil

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message