Sustainable Use of Recycled Asphalt Pavement in Soil Stabilization

Danilo Lima, Jair Arrieta-Baldovino, Ronaldo L. S. Izzo

Abstract


This study addresses unused recycled asphalt pavement (RAP) incorporated into sedimentary soil from the Guabirotuba Formation in Curitiba, Southern Brazil. Different percentages of RAP, ranging from 0% to 80% by weight, were mixed with the pure soil, with and without the addition of pozzolanic Portland cement. Tests were conducted to evaluate the mixtures' compaction properties, mechanical strength, and expansion after curing for up to 28 days. The results showed that adding RAP improved the mixtures' unconfined compressive strength (qu) and splitting tensile strength (qt). Up to 60% RAP, the qu increased by 260 kPa, and the qt increased by 340 kPa compared to the pure soil. The California Bearing Ratio (CBR) tests demonstrated an 18.62% improvement when 80% RAP was added to the untreated soil. In addition, the RAP also reduced the expansion of the compacted blends, with values decreasing from 1.19% to 0.88% with 80% RAP replacement. The expansion value was further reduced to 0.86% when the cement was added. The cement-soil-RAP compacted blends showed suitability for subgrade reinforcement, meeting the criteria of expansion <1% and CBR> 2%. Additionally, 3% cement and 40% RAP mixtures were suitable as a sub-base layer, with expansion <1% and CBR > 20%. The results provide valuable insights into utilizing RAP as an alternative material in soil improvement techniques employing the novelty porosity-to-cement index.

 

Doi: 10.28991/CEJ-2023-09-09-016

Full Text: PDF


Keywords


Recycled Asphalt Pavement; Soil Improvement; Strength; Porosity-Cement.

References


Kormann, A. C. M. (2002). Geomechanical behavior of the Guabirotuba Formation: field and laboratory studies. PhD Thesis, Universidade de São Paulo, São Paulo, Brazil. doi:10.11606/T.3.2002.tde-20072009-092526. (In Portuguese).

Nawir, D., & Mansur, A. Z. (2022). Effects of HDPE Utilization and Addition of Wetfix-Be to Asphalt Pavement in Tropical Climates. Civil Engineering Journal, 8(8), 1665-1678. doi:10.28991/CEJ-2022-08-08-010.

Pires, G. M., Specht, L. P., Pinheiro, R. J. B., Pereira, D. da S., & Renz, E. M. (2016). Comportamento mecânico de material fresado após processo de estabilização granulométrica e química por meio da incorporação de cimento e cinza de casca de arroz moída. Revista Materia, 21(2), 365–384. doi:10.1590/S1517-707620160002.0035. (In Portuguese).

Suddeepong, A., Intra, A., Horpibulsuk, S., Suksiripattanapong, C., Arulrajah, A., & Shen, J. S. (2018). Durability against wetting-drying cycles for cement-stabilized reclaimed asphalt pavement blended with crushed rock. Soils and Foundations, 58(2), 333–343. doi:10.1016/j.sandf.2018.02.017.

Mascarenhas, Z. G., Piao, Z., Vasconcelos, K. L., Poulikakos, L. D., & Bernucci, L. L. B. (2022). Comparative Environmental Analysis of Pavement Structures with Recycled Asphalt Mixtures Produced in Brazil and in Switzerland. SSRN Electronic Journal. doi:10.2139/ssrn.4189363.

Mascarenhas, Z. M. G., Piao, Z., Vasconcelos, K. L., Poulikakos, L. D., & Bernucci, L. L. B. (2023). Comparative environmental performance of pavement structures considering recycled materials and regional differences. Science of the Total Environment, 858. doi:10.1016/j.scitotenv.2022.159862.

Kutay, M. E., & Lanotte, M. (2018). Viscoelastic continuum damage (VECD) models for cracking problems in asphalt mixtures. International Journal of Pavement Engineering, 19(3), 231–242. doi:10.1080/10298436.2017.1279492.

Oliveira, M. S., Farias, M. M. de, & Silva, J. P. S. (2022). Fatigue analysis of hot recycled asphalt mixtures with RAP incorporation. Case Studies in Construction Materials, 16. doi:10.1016/j.cscm.2022.e01132.

Nhieu, D. V., Hoy, M., Horpibulsuk, S., Karntatam, K., Arulrajah, A., & Horpibulsuk, J. (2023). Cement–natural rubber latex stabilised recycled concrete aggregate as a pavement base material. Road Materials and Pavement Design, 24(6), 1636–1650. doi:10.1080/14680629.2022.2072755.

Maghool, F., Arulrajah, A., Ghorbani, B., & Horpibulsuk, S. (2022). Strength and permanent deformation properties of demolition wastes, glass, and plastics stabilized with foamed bitumen for pavement bases. Construction and Building Materials, 320. doi:10.1016/j.conbuildmat.2021.126108.

Amer, O. A., Rangaraju, P., Konduru, H., & Hussein, H. Z. (2022). Sustainable cement alternatives utilizing geopolymer for use in full depth reclamation of asphalt pavements. International Journal of Pavement Engineering. doi:10.1080/10298436.2022.2103132.

Miao, Y., Wang, S., Guo, L., Zheng, X., Huang, Y., & Wang, L. (2018). Effect of temperature on deformation properties of unbound granular materials containing fine RAP. Construction and Building Materials, 169, 443–451. doi:10.1016/j.conbuildmat.2018.02.154.

Adhikari, S., Khattak, M. J., & Adhikari, B. (2020). Mechanical characteristics of Soil-RAP-Geopolymer mixtures for road base and subbase layers. International Journal of Pavement Engineering, 21(4), 483–496. doi:10.1080/10298436.2018.1492131.

Hasan, M. M., Islam, M. R., & Tarefder, R. A. (2018). Characterization of subgrade soil mixed with recycled asphalt pavement. Journal of Traffic and Transportation Engineering (English Edition), 5(3), 207–214. doi:10.1016/j.jtte.2017.03.007.

Suebsuk, J., Suksan, A., & Horpibulsuk, S. (2014). Strength assessment of cement treated soil-reclaimed asphalt pavement (RAP) mixture. International Journal of GEOMATE, 6(2), 878–884. doi:10.21660/2014.12.3262.

NBR 7181:2016. (2016). Granulometric Analysis. Brazilian Association of Technical Standards (ABNT), Rio de Janeiro, State of Rio de Janeiro, Brazil. (In Portuguese).

NBR7180. (1984). Soil-Determination of plasticity limit. Brazilian Association of Technical Standards (ABNT), Rio de Janeiro, State of Rio de Janeiro, Brazil. (In Portuguese).

NBR 6459. (2016). Soil-Determination of liquidity limit. Brazilian Association of Technical Standards (ABNT), Rio de Janeiro, State of Rio de Janeiro, Brazil. (In Portuguese).

ASTM D854. (2023). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International< Pennsylvania, United States.

NBR 16605-17. (2017). Portland cement and other powdered materials – Determination of specific gravity. Brazilian Association of Technical Standards (ABNT), Rio de Janeiro, State of Rio de Janeiro, Brazil. (In Portuguese).

DNER-ME 53/94. (1994Bituminous Mixtures - Percentage of Bitumen - Test method. National Department of Roads and Highways, São Paulo, Brazil. (In Portuguese).

NBR 7182. (2016). Soil-Compaction Test. Brazilian Association of Technical Standards (ABNT), Rio de Janeiro, State of Rio de Janeiro, Brazil. (In Portuguese).

Baldovino, J. de J. A., Izzo, R. L. dos S., Moreira, E. B., & Rose, J. L. (2019). Optimizing the evolution of strength for lime-stabilized rammed soil. Journal of Rock Mechanics and Geotechnical Engineering, 11(4), 882–891. doi:10.1016/j.jrmge.2018.10.008.

DNIT 143. (2010). Pavement Soil-cement base-Service specification. National Department of Transport Infrastructure, Brasília, Brazil.

NBR 9895. (2017). Soil - California Support Index (CSI) - Test Method. Brazilian Association of Technical Standards (ABNT), Rio de Janeiro, State of Rio de Janeiro, Brazil. (In Portuguese).

NBR 5739. (2007). Concrete-Compression Tests on Cylindrical Specimens. Brazilian Association of Technical Standards (ABNT), Rio de Janeiro, State of Rio de Janeiro, Brazil. (In Portuguese).

NBR 7222. (2011). Concrete and mortar-Determination of tensile strength by diametrical compression of cylindrical specimens. Brazilian Association of Technical Standards (ABNT), Rio de Janeiro, State of Rio de Janeiro, Brazil. (In Portuguese).

Tex-120-E. (2013). Test Procedure for Soil-Cement Testing. Texas Department of Transportation, Austin, United States.

Edeh, J. E., Ugama, T., & Okpe, S. A. (2020). The use of cement treated reclaimed asphalt pavement-quarry waste blends as highway material. International Journal of Pavement Engineering, 21(10), 1191–1198. doi:10.1080/10298436.2018.1530445.

Schlögel, C. V., Baldovino, J. D. J. A., & dos Santos Izzo, R. L. (2020). Assessing the correlation suggested by the ASTM D6951 for estimating the California Bearing Ratio using the Dynamic Cone Penetrometer in tropical soils. Unisanta Science and Technology, 8(2), 60-67.

DNIT-ES 139. (2011) Paving – Soil-cement base. National Department of Transport Infrastructure, Brasília, Brazil. (In Portuguese).

DNIT-ES 141. (2010). Granulometrically stabilized base paving using lateritic soil-Service specification. National Department of Transport Infrastructure, Brasília, Brazil. (In Portuguese).

Diambra, A., Festugato, L., Ibraim, E., Peccin da Silva, A., & Consoli, N. C. (2018). Modelling tensile/compressive strength ratio of artificially cemented clean sand. Soils and Foundations, 58(1), 199–211. doi:10.1016/j.sandf.2017.11.011.

Baldovino, J. de J. A., Izzo, R. L. dos S., Pereira, M. D., Rocha, E. V. de G., Rose, J. L., & Bordignon, V. R. (2020). Equations Controlling Tensile and Compressive Strength Ratio of Sedimentary Soil–Cement Mixtures under Optimal Compaction Conditions. Journal of Materials in Civil Engineering, 32(1), 4019320. doi:10.1061/(asce)mt.1943-5533.0002973.

Baldovino, J. de J. A., Izzo, R. L. dos S., Feltrim, F., & da Silva, É. R. (2020). Experimental Study on Guabirotuba’s Soil Stabilization Using Extreme Molding Conditions. Geotechnical and Geological Engineering, 38(3), 2591–2607. doi:10.1007/s10706-019-01171-x.

Baldovino, J. de J. A., Moreira, E. B., Carazzai, É., Rocha, E. V. de G., dos Santos Izzo, R., Mazer, W., & Rose, J. L. (2021). Equations controlling the strength of sedimentary silty soil–cement blends: influence of voids/cement ratio and types of cement. International Journal of Geotechnical Engineering, 15(3), 359–372. doi:10.1080/19386362.2019.1612134.

Arrieta Baldovino, J. de J., dos Santos Izzo, R. L., da Silva, É. R., & Lundgren Rose, J. (2020). Sustainable Use of Recycled-Glass Powder in Soil Stabilization. Journal of Materials in Civil Engineering, 32(5). doi:10.1061/(asce)mt.1943-5533.0003081.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-09-016

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Danilo Lima, Jair Arrieta-Baldovino, Ronaldo Izzo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message