Effect of Openings on the Torsional Behavior of SCC Box Beams Under Monotonic and Repeated Loading
Abstract
Doi: 10.28991/CEJ-2023-09-09-015
Full Text: PDF
Keywords
References
Abdulameer, S. H. (2017). The behavior of Hollow I-beams Reactive Powder Concrete with Opening under Pure Torque. Master Thesis, Al-Mustansiriya University, Baghdad, Iraq.
Mouwainea, E. M. (2014). Experimental Study of Reinforced Concrete Hollow Beams under Torsion. Master Thesis, Al-Mustansiriya University, Baghdad, Iraq.
Salahaldin, A. I., Jomaa’h, M. M., Oukaili, N. A., & Ghaidan, D. J. (2022). Rehabilitation of Hybrid RC-I Beams with Openings Using CFRP Sheets. Civil Engineering Journal, 8(1), 155-166. doi:10.28991/CEJ-2022-08-01-012.
Neville, A. M. (1995). Properties of concrete. Longman, London, United Kingdom.
Bhatt, P., & Ebireri, J. O. (1989). Direct design of reinforced concrete beams for combined bending and torsion. Stavebnicky Casopis, 37(4), 249–263.
Alnuaimi, A. S., Al-Jabri, K. S., & Hago, A. (2008). Comparison between solid and hollow reinforced concrete beams. Materials and Structures/Materiaux et Constructions, 41(2), 269–286. doi:10.1617/s11527-007-9237-x.
Abdul-Hussein W. G. (2010). Behavior of Reinforced Reactive Powder Concrete Beams in Torsion. PhD Thesis, University of Technology, Baghdad, Iraq.
Bernardo, L. F. A., & Lopes, S. M. R. (2013). Plastic analysis and twist capacity of high-strength concrete hollow beams under pure torsion. Engineering Structures, 49, 190–201. doi:10.1016/j.engstruct.2012.10.030.
Al-Khafaji, J., Al-Shaarbaf, I., & Ra'id, F. A. (2016). Reinforced Self-Compacting Concrete Beams under Torsion. Journal of Engineering and Sustainable Development, 20(2), 82-99.
El-HakimKhalil, A., Etman, E., Atta, A., & Fayed, S. (2015). Torsional strengthening of RC box beams using external prestressing technique. IOSR Journal of Mechanical and Civil Engineering, 12(2), 30-41.
Jabbar, S., Hejazi, F., & Mahmod, H. M. (2016). Effect of an opening on reinforced concrete hollow beam web under torsional, flexural, and cyclic loadings. Latin American Journal of Solids and Structures, 13(8), 1576–1595. doi:10.1590/1679-782512629.
Ma, S., Bunnori, N. M., & Choong, K. K. (2018). Prediction of Ultimate Torque of Reinforced Concrete Box Beam Bonded with CFRP Strips. KSCE Journal of Civil Engineering, 22(11), 4353–4363. doi:10.1007/s12205-018-0872-2.
Ajeel, A. E., Qaseem, T. A., & Rasheed, S. R. (2018). Structural behavior of voided reinforced concrete beams under combined moments. Civil and Environmental Research, 10(1), 17-24.
Oukaili, N. K., & Abdullah, S. S. (2018). Strengthening Aspects to Improve Serviceability of Open Web Expanded Steel-Concrete Composite Beams in Combined Bending and Torsion. IOP Conference Series: Materials Science and Engineering, 433, 012041. doi:10.1088/1757-899x/433/1/012041.
Zhu, M., Yan, Z., Chen, L., Lu, Z., & Chen, Y. F. (2019). Experimental study on composite mechanical properties of a double-deck prestressed concrete box girder. Advances in Structural Engineering, 22(12), 2545–2556. doi:10.1177/1369433219845150.
Hussain, H. A. (2019). Torsional Behavior of Reinforced Self-compacting Concrete Beams with Hybrid Fibers. Master Thesis, University of Technology, Baghdad, Iraq.
Obaidat, Y. T., Ashteyat, A. M., & Obaidat, A. T. (2020). Performance of RC Beam Strengthened with NSM-CFRP Strip Under Pure Torsion: Experimental and Numerical Study. International Journal of Civil Engineering, 18(5), 585–593. doi:10.1007/s40999-019-00487-2.
Oukaili, N. K., & Khattab, M. M. (2019). Serviceability and ductility of partially prestressed concrete beams under limited cycles of repeated loading. GEOMATE Journal, 17(60), 9-15.
Shalaby, A. R., Diaa, G., & Abdalla, H. (2020). Repair of RC Beams With Openings Subjected To Torsion Using Steel Plates. International Journal of Civil Engineering and Technology, 11(10), 58–73. doi:10.34218/ijciet.11.10.2020.007.
Abdulrahman, M. B., Al-Jaberi, L. A., & Hasan, S. S. (2020). The Effect of Opening Size and Location on the Performance of Reinforced Concrete T-Beams under Pure Torque. Tikrit Journal of Engineering Sciences, 27(2), 46–53. doi:10.25130/tjes.27.2.06.
Lin, W. (2021). Experimental investigation on composite beams under combined negative bending and torsional moments. Advances in Structural Engineering, 24(7), 1456–1465. doi:10.1177/1369433220981660.
Hassan, R. F., Jaber, M. H., Al-Salim, N. H., & Hussein, H. H. (2020). Experimental research on torsional strength of synthetic/steel fiber-reinforced hollow concrete beam. Engineering Structures, 220. doi:10.1016/j.engstruct.2020.110948.
Moatt, A. H. (2020). Web Opening Strengthening of Hollow Beams Self-Compacting Concrete Under Pure Torsion. PhD Thesis, Al-Mustansiriya University, Baghdad, Iraq.
Bernardo, L., Lopes, S., & Teixeira, M. (2020). Experimental study on the torsional behaviour of prestressed HSC hollow beams. Applied Sciences (Switzerland), 10(2), 642. doi:10.3390/app10020642.
Mures, J., Chkheiwer, A., & Ahmed, M. (2021). Numerical Analysis of Hollow Cross Section Reinforced Concrete Beams Strengthened by Steel Fibers Under Pure Torsion. Basrah Journal for Engineering Science, 21(3), 50–54. doi:10.33971/bjes.21.3.6.
Abbas, R. M., & Hussein, L. T. (2023). Transient response and performance of prestressed concrete deep T-beams with large web openings under impact loading. Journal of the Mechanical Behavior of Materials, 32(1), 1–11. doi:10.1515/jmbm-2022-0268.
ACI 318-19. (2011). Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute, Michigan, United States.
EFNARC (2002) Specification and Guidelines for Self-Compacting. Concrete, Association House, Surrey, United Kingdom.
ASTM C33/C33M-18. (2023). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.
ASTM A615/A615M-22. (2022). Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement. ASTM International, Pennsylvania, United States. doi:10.1520/A0615_A0615M-22.
ASTM C39/C39M-21. (2021). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039M-21.
ASTM C496-96. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0496-96.
ASTM C469/C469M-22. (2022). Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. ASTM International, Pennsylvania, United States. doi:10.1520/C0469_C0469M-22.
ASTM C78-09. (2010). Standard test method for flexural strength of concrete (Using Simple Beam with Third-Point Loading). ASTM International, Pennsylvania, United States. doi:10.1520/C0078-09.
DOI: 10.28991/CEJ-2023-09-09-015
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Haneen Maad Mahdi
This work is licensed under a Creative Commons Attribution 4.0 International License.