Derivation of Optimal Two Dimensional Rule Curve for Dualistic Reservoir Water-Supply System

Nasser Khalaf, Thair Shareef, Mustafa Al-Mukhtar


In arid and semi-arid regions particularly vulnerable to climate change, optimizing the long-term operation of multi-purpose reservoirs is paramount. This study derived an optimum two-dimensional rule curve to jointly operate the parallel reservoirs of Mosul and Dukan, Northern Iraq. A hybridized optimization technique combining conventional dynamic programming with the shuffled complex evolution algorithm (SCE-UA) was developed to solve this problem. The results showed that the proportion of normal water supply areas increased from the beginning of the flood season (October) to its highest levels in April (58.77% of the total water supply area). The proportion decreased to its lowest in September (25.04% of the total water supply area). The newly derived 2D rule cure was compared with the current operation policy and was found to optimize the amount of water shortage by 21.1% during the operational period. It also reduced the shortage period and avoided catastrophic water shortages during droughts. In addition, the developed model optimized the amounts of water more than the joint water requirements, suffering from a significant deficit in meeting the demand during some months of the operational years. As a result, the storage in each reservoir was improved and thence can be adapted to face water shortages during future climate changes. This study proved the new hybridized model's applicability and can serve as a tool for sustainable water management.


Doi: 10.28991/CEJ-2023-09-07-016

Full Text: PDF


2D Rule Curve; Optimization; Shuffled Complex Evolution Algorithm; Dualistic Reservoirs; Iraq.


Kumar, V., & Yadav, S. M. (2022). Multi-objective reservoir operation of the Ukai reservoir system using an improved Jaya algorithm. Water Supply, 22(2), 2287–2310. doi:10.2166/ws.2021.374.

Liu, B., Xia, J., Yang, L., Cui, C., Wang, L., & Li, T. (2020). Improved dynamic simulation technique for hydrodynamics and water quality of river-connected lakes. Water Supply, 20(8), 3752–3767. doi:10.2166/ws.2020.125.

Simonovic, S. (1987). The implicit stochastic model for reservoir yield optimization. Water Resources Research, 23(12), 2159–2165. doi:10.1029/WR023i012p02159.

Fang, H., Li, X., Shang, W., & Wang, L. (2022). Improved multi-reservoir operation rules of water supply system based on target storage curves. Water Supply, 22(6), 5753–5770. doi:10.2166/ws.2022.214.

Connaughton, J., King, N., Dong, L., Ji, P., & Lund, J. (2014). Comparing simple flood reservoir operation rules. Water (Switzerland), 6(9), 2717–2731. doi:10.3390/w6092717.

Ahmadi, M., Haddad, O. B., & Loáiciga, H. A. (2015). Adaptive Reservoir Operation Rules Under Climatic Change. Water Resources Management, 29(4), 1247–1266. doi:10.1007/s11269-014-0871-0.

Diao, Y., Wang, C., Wang, H., & Liu, Y. (2021). Construction and application of reservoir flood control operation rules using the decision tree algorithm. Water (Switzerland), 13(24), 3654. doi:10.3390/w13243654.

Chang, Y. T., Chang, L. C., & Chang, F. J. (2005). Intelligent control for modeling of real-time reservoir operation, part II: Artificial neural network with operating rule curves. Hydrological Processes, 19(7), 1431–1444. doi:10.1002/hyp.5582.

Chen, L., McPhee, J., & Yeh, W. W. G. (2007). A diversified multiobjective GA for optimizing reservoir rule curves. Advances in Water Resources, 30(5), 1082–1093. doi:10.1016/j.advwatres.2006.10.001.

Karami, H., Farzin, S., Jahangiri, A., Ehteram, M., Kisi, O., & El-Shafie, A. (2019). Multi-Reservoir System Optimization Based on Hybrid Gravitational Algorithm to Minimize Water-Supply Deficiencies. Water Resources Management, 33(8), 2741–2760. doi:10.1007/s11269-019-02238-3.

Al-Aqeeli, Y. H., & Mahmood Agha, O. M. A. (2020). Optimal Operation of Multi-reservoir System for Hydropower Production Using Particle Swarm Optimization Algorithm. Water Resources Management, 34(10), 3099–3112. doi:10.1007/s11269-020-02583-8.

Xu, W., Zhang, C., Peng, Y., Fu, G., & Zhou, H. (2014). A two stage Bayesian stochastic optimization model for cascaded hydropower systems considering varying uncertainty of flow forecasts. Water Resources Research, 50(12), 9267–9286. doi:10.1002/2013WR015181.

Peng, A. B., Peng, Y., Zhou, H. C., & Zhang, C. (2015). Multi-reservoir joint operating rule in inter-basin water transfer-supply project. Science China Technological Sciences, 58(1), 123–137. doi:10.1007/s11431-014-5641-y.

Oliveira, R., & Loucks, D. P. (1997). Operating rules for multi-reservoir systems. Water Resources Research, 33(4), 839–852. doi:10.1029/96WR03745.

Maass, A., Hufschmidt, M. M., Dorfman, R., Thomas, Jr, H. A., Marglin, S. A., & Fair, G. M. (1962). Design of water-resource systems: New techniques for relating economic objectives, engineering analysis, and governmental planning. Harvard University Press. doi:10.4159/harvard.9780674421042.

Stedinger, J. R. (1984). The Performance of LDR Models for Preliminary Design and Reservoir Operation. Water Resources Research, 20(2), 215–224. doi:10.1029/WR020i002p00215.

Clark, E. J. (1956). Impounding reservoirs. Journal (American Water Works Association), 48(4), 349-354.

Johnson, S. A., Stedinger, J. R., & Staschus, K. (1991). Heuristic operating policies for reservoir system simulation. Water Resources Research, 27(5), 673–685. doi:10.1029/91WR00320.

Zeng, X., Hu, T., Xiong, L., Cao, Z., & Xu, C. (2015). Derivation of operation rules for reservoirs in parallel with joint water demand. Water Resources Research, 51(12), 9539–9563. doi:10.1002/2015WR017250.

Guo, X., Hu, T., Zeng, X., & Li, X. (2013). Extension of Parametric Rule with the Hedging Rule for Managing Multireservoir System during Droughts. Journal of Water Resources Planning and Management, 139(2), 139–148. doi:10.1061/(asce)wr.1943-5452.0000241.

Tan, Q. feng, Wang, X., Wang, H., Wang, C., Lei, X. hui, Xiong, Y. song, & Zhang, W. (2017). Derivation of optimal joint operating rules for multi-purpose multi-reservoir water-supply system. Journal of Hydrology, 551, 253–264. doi:10.1016/j.jhydrol.2017.06.009.

Kosasaeng, S., Yamoat, N., Ashrafi, S. M., & Kangrang, A. (2022). Extracting Optimal Operation Rule Curves of Multi-Reservoir System Using Atom Search Optimization, Genetic Programming and Wind Driven Optimization. Sustainability (Switzerland), 14(23), 16205. doi:10.3390/su142316205.

Kangrang, A., & Chaleeraktrakoon, C. (2008). Suitable conditions of reservoir simulation for searching rule curves. Journal of Applied Sciences, 8(7), 1274–1279. doi:10.3923/jas.2008.1274.1279.

Adeloye, A. J., Soundharajan, B. S., Ojha, C. S. P., & Remesan, R. (2016). Effect of hedging-integrated rule curves on the performance of the pong reservoir (India) during scenario-neutral climate change perturbations. Water Resources Management, 30(2), 445–470. doi:10.1007/s11269-015-1171-z.

Mohanavelu, A., Soundharajan, B. S., & Kisi, O. (2022). Modeling Multi-objective Pareto-optimal Reservoir Operation Policies Using State-of-the-art Modeling Techniques. Water Resources Management, 36(9), 3107–3128. doi:10.1007/s11269-022-03191-4.

Chang, F. J., Chen, L., & Chang, L. C. (2005). Optimizing the reservoir operating rule curves by genetic algorithms. Hydrological Processes, 19(11), 2277–2289. doi:10.1002/hyp.5674.

Kangrang, A., Prasanchum, H., & Hormwichian, R. (2018). Development of Future Rule Curves for Multipurpose Reservoir Operation Using Conditional Genetic and Tabu Search Algorithms. Advances in Civil Engineering, 2018, 1–10. doi:10.1155/2018/6474870.

Marchand, A., Gendreau, M., Blais, M., & Guidi, J. (2019). Optimized operating rules for short-term hydropower planning in a stochastic environment. Computational Management Science, 16(3), 501–519. doi:10.1007/s10287-019-00348-2.

Haddad, O. B., Afshar, A., & Mariño, M. A. (2008). Honey-bee mating optimization (HBMO) algorithm in deriving optimal operation rules for reservoirs. Journal of Hydroinformatics, 10(3), 257–264. doi:10.2166/hydro.2008.018.

Techarungruengsakul, R., & Kangrang, A. (2022). Application of Harris Hawks Optimization with Reservoir Simulation Model Considering Hedging Rule for Network Reservoir System. Sustainability (Switzerland), 14(9), 4913. doi:10.3390/su14094913.

Ahmadianfar, I., Kheyrandish, A., Jamei, M., & Gharabaghi, B. (2021). Optimizing operating rules for multi-reservoir hydropower generation systems: An adaptive hybrid differential evolution algorithm. Renewable Energy, 167, 774–790. doi:10.1016/j.renene.2020.11.152.

Ahmadianfar, I., Khajeh, Z., Asghari-Pari, S. A., & Chu, X. (2019). Developing optimal policies for reservoir systems using a multi-strategy optimization algorithm. Applied Soft Computing, 80, 888–903. doi:10.1016/j.asoc.2019.04.004.

Yaseen, Z. M., Karami, H., Ehteram, M., Mohd, N. S., Mousavi, S. F., Hin, L. S., Kisi, O., Farzin, S., Kim, S., & El-Shafie, A. (2018). Optimization of Reservoir Operation using New Hybrid Algorithm. KSCE Journal of Civil Engineering, 22(11), 4668–4680. doi:10.1007/s12205-018-2095-y.

Masoumi, F., Masoumzadeh, S., Zafari, N., & Emami-Skardi, M. J. (2022). Optimal operation of single and multi-reservoir systems via hybrid shuffled grey wolf optimization algorithm (SGWO). Water Supply, 22(2), 1663–1675. doi:10.2166/ws.2021.326.

Nezhad, O. B., Najarchi, M., NajafiZadeh, M. M., & Hezaveh, S. M. M. (2018). Developing a shuffled complex evolution algorithm using a differential evolution algorithm for optimizing hydropower reservoir systems. Water Science and Technology: Water Supply, 18(3), 1081-1092. doi:10.2166/ws.2017.179 .

Ministry of Water Resources (2022). General Directorate of Dams and Reservoirs in Iraq, Baghdad. Iraq.

Al-Ansari, N., Adamo, N., Al-Hamdani, M. R., Sahar, K., & Al-Naemi, R. E. A. (2021). Mosul Dam Problem and Stability. Engineering, 13(03), 105–124. doi:10.4236/eng.2021.133009.

Othman, L., & Ibrahim, H. (2014). Simulation-Optimization Model for Dokan Reservoir System Operation. Sulaimani Journal for Engineering Sciences, 1(1). doi:10.17656/sjes.10053.

You, J. Y., & Cai, X. (2008). Hedging rule for reservoir operations: 2. A numerical model. Water Resources Research, 44(1). doi:10.1029/2006WR005482.

You, J. Y., & Cai, X. (2008). Hedging rule for reservoir operations: 1. A theoretical analysis. Water Resources Research, 44(1). doi:10.1029/2006WR005481.

Hashimoto, T., Stedinger, J. R., & Loucks, D. P. (1982). Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resources Research, 18(1), 14–20. doi:10.1029/WR018i001p00014.

Sandoval-Solis, S., McKinney, D. C., & Loucks, D. P. (2011). Sustainability Index for Water Resources Planning and Management. Journal of Water Resources Planning and Management, 137(5), 381–390. doi:10.1061/(asce)wr.1943-5452.0000134.

Boyle, D. P., Gupta, H. V., & Sorooshian, S. (2000). Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods. Water Resources Research, 36(12), 3663–3674. doi:10.1029/2000WR900207.

Naeini, M. R., Analui, B., Gupta, H. V., Duan, Q., & Soroosliian, S. (2019). Three decades of the shuffled complex evolution (sce-ua) optimization algorithm: Review and applications. Scientia Iranica, 26(4A), 2015–2031. doi:10.24200/sci.2019.21500.

Duan, Q., Sorooshian, S., & Gupta, V. K. (1994). Optimal use of the SCE-UA global optimization method for calibrating watershed models. Journal of Hydrology, 158(3–4), 265–284. doi:10.1016/0022-1694(94)90057-4.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-07-016


  • There are currently no refbacks.

Copyright (c) 2023 Nasser Khalaf Muhaisin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.