Derivation of Optimal Two Dimensional Rule Curve for Dualistic Reservoir Water-Supply System
Abstract
Doi: 10.28991/CEJ-2023-09-07-016
Full Text: PDF
Keywords
References
Kumar, V., & Yadav, S. M. (2022). Multi-objective reservoir operation of the Ukai reservoir system using an improved Jaya algorithm. Water Supply, 22(2), 2287–2310. doi:10.2166/ws.2021.374.
Liu, B., Xia, J., Yang, L., Cui, C., Wang, L., & Li, T. (2020). Improved dynamic simulation technique for hydrodynamics and water quality of river-connected lakes. Water Supply, 20(8), 3752–3767. doi:10.2166/ws.2020.125.
Simonovic, S. (1987). The implicit stochastic model for reservoir yield optimization. Water Resources Research, 23(12), 2159–2165. doi:10.1029/WR023i012p02159.
Fang, H., Li, X., Shang, W., & Wang, L. (2022). Improved multi-reservoir operation rules of water supply system based on target storage curves. Water Supply, 22(6), 5753–5770. doi:10.2166/ws.2022.214.
Connaughton, J., King, N., Dong, L., Ji, P., & Lund, J. (2014). Comparing simple flood reservoir operation rules. Water (Switzerland), 6(9), 2717–2731. doi:10.3390/w6092717.
Ahmadi, M., Haddad, O. B., & Loáiciga, H. A. (2015). Adaptive Reservoir Operation Rules Under Climatic Change. Water Resources Management, 29(4), 1247–1266. doi:10.1007/s11269-014-0871-0.
Diao, Y., Wang, C., Wang, H., & Liu, Y. (2021). Construction and application of reservoir flood control operation rules using the decision tree algorithm. Water (Switzerland), 13(24), 3654. doi:10.3390/w13243654.
Chang, Y. T., Chang, L. C., & Chang, F. J. (2005). Intelligent control for modeling of real-time reservoir operation, part II: Artificial neural network with operating rule curves. Hydrological Processes, 19(7), 1431–1444. doi:10.1002/hyp.5582.
Chen, L., McPhee, J., & Yeh, W. W. G. (2007). A diversified multiobjective GA for optimizing reservoir rule curves. Advances in Water Resources, 30(5), 1082–1093. doi:10.1016/j.advwatres.2006.10.001.
Karami, H., Farzin, S., Jahangiri, A., Ehteram, M., Kisi, O., & El-Shafie, A. (2019). Multi-Reservoir System Optimization Based on Hybrid Gravitational Algorithm to Minimize Water-Supply Deficiencies. Water Resources Management, 33(8), 2741–2760. doi:10.1007/s11269-019-02238-3.
Al-Aqeeli, Y. H., & Mahmood Agha, O. M. A. (2020). Optimal Operation of Multi-reservoir System for Hydropower Production Using Particle Swarm Optimization Algorithm. Water Resources Management, 34(10), 3099–3112. doi:10.1007/s11269-020-02583-8.
Xu, W., Zhang, C., Peng, Y., Fu, G., & Zhou, H. (2014). A two stage Bayesian stochastic optimization model for cascaded hydropower systems considering varying uncertainty of flow forecasts. Water Resources Research, 50(12), 9267–9286. doi:10.1002/2013WR015181.
Peng, A. B., Peng, Y., Zhou, H. C., & Zhang, C. (2015). Multi-reservoir joint operating rule in inter-basin water transfer-supply project. Science China Technological Sciences, 58(1), 123–137. doi:10.1007/s11431-014-5641-y.
Oliveira, R., & Loucks, D. P. (1997). Operating rules for multi-reservoir systems. Water Resources Research, 33(4), 839–852. doi:10.1029/96WR03745.
Maass, A., Hufschmidt, M. M., Dorfman, R., Thomas, Jr, H. A., Marglin, S. A., & Fair, G. M. (1962). Design of water-resource systems: New techniques for relating economic objectives, engineering analysis, and governmental planning. Harvard University Press. doi:10.4159/harvard.9780674421042.
Stedinger, J. R. (1984). The Performance of LDR Models for Preliminary Design and Reservoir Operation. Water Resources Research, 20(2), 215–224. doi:10.1029/WR020i002p00215.
Clark, E. J. (1956). Impounding reservoirs. Journal (American Water Works Association), 48(4), 349-354.
Johnson, S. A., Stedinger, J. R., & Staschus, K. (1991). Heuristic operating policies for reservoir system simulation. Water Resources Research, 27(5), 673–685. doi:10.1029/91WR00320.
Zeng, X., Hu, T., Xiong, L., Cao, Z., & Xu, C. (2015). Derivation of operation rules for reservoirs in parallel with joint water demand. Water Resources Research, 51(12), 9539–9563. doi:10.1002/2015WR017250.
Guo, X., Hu, T., Zeng, X., & Li, X. (2013). Extension of Parametric Rule with the Hedging Rule for Managing Multireservoir System during Droughts. Journal of Water Resources Planning and Management, 139(2), 139–148. doi:10.1061/(asce)wr.1943-5452.0000241.
Tan, Q. feng, Wang, X., Wang, H., Wang, C., Lei, X. hui, Xiong, Y. song, & Zhang, W. (2017). Derivation of optimal joint operating rules for multi-purpose multi-reservoir water-supply system. Journal of Hydrology, 551, 253–264. doi:10.1016/j.jhydrol.2017.06.009.
Kosasaeng, S., Yamoat, N., Ashrafi, S. M., & Kangrang, A. (2022). Extracting Optimal Operation Rule Curves of Multi-Reservoir System Using Atom Search Optimization, Genetic Programming and Wind Driven Optimization. Sustainability (Switzerland), 14(23), 16205. doi:10.3390/su142316205.
Kangrang, A., & Chaleeraktrakoon, C. (2008). Suitable conditions of reservoir simulation for searching rule curves. Journal of Applied Sciences, 8(7), 1274–1279. doi:10.3923/jas.2008.1274.1279.
Adeloye, A. J., Soundharajan, B. S., Ojha, C. S. P., & Remesan, R. (2016). Effect of hedging-integrated rule curves on the performance of the pong reservoir (India) during scenario-neutral climate change perturbations. Water Resources Management, 30(2), 445–470. doi:10.1007/s11269-015-1171-z.
Mohanavelu, A., Soundharajan, B. S., & Kisi, O. (2022). Modeling Multi-objective Pareto-optimal Reservoir Operation Policies Using State-of-the-art Modeling Techniques. Water Resources Management, 36(9), 3107–3128. doi:10.1007/s11269-022-03191-4.
Chang, F. J., Chen, L., & Chang, L. C. (2005). Optimizing the reservoir operating rule curves by genetic algorithms. Hydrological Processes, 19(11), 2277–2289. doi:10.1002/hyp.5674.
Kangrang, A., Prasanchum, H., & Hormwichian, R. (2018). Development of Future Rule Curves for Multipurpose Reservoir Operation Using Conditional Genetic and Tabu Search Algorithms. Advances in Civil Engineering, 2018, 1–10. doi:10.1155/2018/6474870.
Marchand, A., Gendreau, M., Blais, M., & Guidi, J. (2019). Optimized operating rules for short-term hydropower planning in a stochastic environment. Computational Management Science, 16(3), 501–519. doi:10.1007/s10287-019-00348-2.
Haddad, O. B., Afshar, A., & Mariño, M. A. (2008). Honey-bee mating optimization (HBMO) algorithm in deriving optimal operation rules for reservoirs. Journal of Hydroinformatics, 10(3), 257–264. doi:10.2166/hydro.2008.018.
Techarungruengsakul, R., & Kangrang, A. (2022). Application of Harris Hawks Optimization with Reservoir Simulation Model Considering Hedging Rule for Network Reservoir System. Sustainability (Switzerland), 14(9), 4913. doi:10.3390/su14094913.
Ahmadianfar, I., Kheyrandish, A., Jamei, M., & Gharabaghi, B. (2021). Optimizing operating rules for multi-reservoir hydropower generation systems: An adaptive hybrid differential evolution algorithm. Renewable Energy, 167, 774–790. doi:10.1016/j.renene.2020.11.152.
Ahmadianfar, I., Khajeh, Z., Asghari-Pari, S. A., & Chu, X. (2019). Developing optimal policies for reservoir systems using a multi-strategy optimization algorithm. Applied Soft Computing, 80, 888–903. doi:10.1016/j.asoc.2019.04.004.
Yaseen, Z. M., Karami, H., Ehteram, M., Mohd, N. S., Mousavi, S. F., Hin, L. S., Kisi, O., Farzin, S., Kim, S., & El-Shafie, A. (2018). Optimization of Reservoir Operation using New Hybrid Algorithm. KSCE Journal of Civil Engineering, 22(11), 4668–4680. doi:10.1007/s12205-018-2095-y.
Masoumi, F., Masoumzadeh, S., Zafari, N., & Emami-Skardi, M. J. (2022). Optimal operation of single and multi-reservoir systems via hybrid shuffled grey wolf optimization algorithm (SGWO). Water Supply, 22(2), 1663–1675. doi:10.2166/ws.2021.326.
Nezhad, O. B., Najarchi, M., NajafiZadeh, M. M., & Hezaveh, S. M. M. (2018). Developing a shuffled complex evolution algorithm using a differential evolution algorithm for optimizing hydropower reservoir systems. Water Science and Technology: Water Supply, 18(3), 1081-1092. doi:10.2166/ws.2017.179 .
Ministry of Water Resources (2022). General Directorate of Dams and Reservoirs in Iraq, Baghdad. Iraq.
Al-Ansari, N., Adamo, N., Al-Hamdani, M. R., Sahar, K., & Al-Naemi, R. E. A. (2021). Mosul Dam Problem and Stability. Engineering, 13(03), 105–124. doi:10.4236/eng.2021.133009.
Othman, L., & Ibrahim, H. (2014). Simulation-Optimization Model for Dokan Reservoir System Operation. Sulaimani Journal for Engineering Sciences, 1(1). doi:10.17656/sjes.10053.
You, J. Y., & Cai, X. (2008). Hedging rule for reservoir operations: 2. A numerical model. Water Resources Research, 44(1). doi:10.1029/2006WR005482.
You, J. Y., & Cai, X. (2008). Hedging rule for reservoir operations: 1. A theoretical analysis. Water Resources Research, 44(1). doi:10.1029/2006WR005481.
Hashimoto, T., Stedinger, J. R., & Loucks, D. P. (1982). Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resources Research, 18(1), 14–20. doi:10.1029/WR018i001p00014.
Sandoval-Solis, S., McKinney, D. C., & Loucks, D. P. (2011). Sustainability Index for Water Resources Planning and Management. Journal of Water Resources Planning and Management, 137(5), 381–390. doi:10.1061/(asce)wr.1943-5452.0000134.
Boyle, D. P., Gupta, H. V., & Sorooshian, S. (2000). Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods. Water Resources Research, 36(12), 3663–3674. doi:10.1029/2000WR900207.
Naeini, M. R., Analui, B., Gupta, H. V., Duan, Q., & Soroosliian, S. (2019). Three decades of the shuffled complex evolution (sce-ua) optimization algorithm: Review and applications. Scientia Iranica, 26(4A), 2015–2031. doi:10.24200/sci.2019.21500.
Duan, Q., Sorooshian, S., & Gupta, V. K. (1994). Optimal use of the SCE-UA global optimization method for calibrating watershed models. Journal of Hydrology, 158(3–4), 265–284. doi:10.1016/0022-1694(94)90057-4.
DOI: 10.28991/CEJ-2023-09-07-016
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Nasser Khalaf Muhaisin
This work is licensed under a Creative Commons Attribution 4.0 International License.