Effect of Portland Cement on Mechanical and Durability Properties of Geopolymer Concrete at Ambient Temperature

Seick Omar Sore, Yawo Daniel Adufu, Philbert Nshimiyimana, Adamah Messan, Gilles Escadeillas


Environmental concerns have prompted researchers to focus on the development of alternative building materials like geopolymer concrete. However, their implementation requires curing beyond 60°C, which limits their application on building sites. This study aims to design a geopolymer concrete at room temperature (30 ± 5°C) in a laboratory in Burkina Faso using a metakaolin-based geopolymer binder activated by an alkaline solution of NaOH and natural aggregates. Portland cement type CEM I 42.5 was used by mass substitution (0 to 25%) of metakaolin to promote curing at ambient temperature. The samples were cured for 7 to 28 days and characterized for physical, mechanical, and durability properties. The results showed that the incorporation of 0 to 20% cement significantly improved the compressive strength from 9.9 to 30.5 MPa and the tensile strength from 1.2 to 2.2 MPa. However, Portland cement has various effects on the durability of geopolymer concrete. It reduces the porosity accessible by water from 15 to 13% and decreases the resistance to acid attack by increasing the mass loss from 2 to 7%. This confirms that common concrete types C20/25 or C25/30 can be casted using geopolymer concrete on the sites in Burkina Faso once their durability is confirmed.


Doi: 10.28991/CEJ-2023-09-07-04

Full Text: PDF


Portland Cement; Metakaolin; Geopolymer Concrete; Physico-Mechanical Property; Durability.


Ighalo, J. O., & Adeniyi, A. G. (2020). A perspective on environmental sustainability in the cement industry. Waste Disposal and Sustainable Energy, 2(3), 161–164. doi:10.1007/s42768-020-00043-y.

Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., & Rangan, B. V. (2004). On the development of fly ash-based geopolymer concrete. ACI Materials Journal, 101(6), 467–472. doi:10.14359/13485.

Kroviakov, S., Zavoloka, M., Dudnik, L., & Kryzhanovskyi, V. (2019). Comparison of Strength and Durability of Concretes Made with Sulfate-Resistant Portland cement and Portland cement with Pozzolana Additive. Elektronički Časopis Građevinskog Fakulteta Osijek, 19, 81–86. doi:10.13167/2019.19.8.

Chen, K., Wu, D., Xia, L., Cai, Q., & Zhang, Z. (2021). Geopolymer concrete durability subjected to aggressive environments – A review of influence factors and comparison with ordinary Portland cement. Construction and Building Materials, 279, 122496. doi:10.1016/j.conbuildmat.2021.122496.

Abhilash, P., Sashidhar, C., & Reddy, I. R. (2016). Strength properties of Fly ash and GGBS based Geo-polymer Concrete. International Journal of ChemTech Research, 9(3), 350-356.

Ali, A. A., Al-Attar, T. S., & Abbas, W. A. (2022). A Statistical Model to Predict the Strength Development of Geopolymer Concrete Based on SiO2/Al2O3 Ratio Variation. Civil Engineering Journal (Iran), 8(3), 454–471. doi:10.28991/CEJ-2022-08-03-04.

El-Dieb, A. S., & Kanaan, D. M. (2018). Ceramic waste powder an alternative cement replacement–Characterization and evaluation. Sustainable Materials and Technologies, 17, e00063. doi:10.1016/j.susmat.2018.e00063.

McLellan, B. C., Williams, R. P., Lay, J., Van Riessen, A., & Corder, G. D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. Journal of Cleaner Production, 19(9–10), 1080–1090. doi:10.1016/j.jclepro.2011.02.010.

Nath, P., & Sarker, P. K. (2015). Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cement and Concrete Composites, 55, 205–214. doi:10.1016/j.cemconcomp.2014.08.008.

Joshi, S. V., & Kadu, M. S. (2012). Role of Alkaline Activator in Development of Eco-friendly Fly Ash Based Geo Polymer Concrete. International Journal of Environmental Science and Development, 417–421. doi:10.7763/ijesd.2012.v3.258.

Ramujee, K., & Potharaju, M. (2017). Mechanical Properties of Geopolymer Concrete Composites. Materials Today: Proceedings, 4(2), 2937–2945. doi:10.1016/j.matpr.2017.02.175.

Nazari, A., Bagheri, A., Sanjayan, J. G., Dao, M., Mallawa, C., Zannis, P., & Zumbo, S. (2019). Thermal shock reactions of Ordinary Portland cement and geopolymer concrete: Microstructural and mechanical investigation. Construction and Building Materials, 196, 492–498. doi:10.1016/j.conbuildmat.2018.11.098.

Nath, P., & Sarker, P. K. (2017). Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Construction and Building Materials, 130, 22–31. doi:10.1016/j.conbuildmat.2016.11.034.

Mehta, A., & Siddique, R. (2017). Properties of low-calcium fly ash based geopolymer concrete incorporating OPC as partial replacement of fly ash. Construction and Building Materials, 150, 792–807. doi:10.1016/j.conbuildmat.2017.06.067.

Khan, M. Z. N., Shaikh, F. Uddin A., Hao, Y., & Hao, H. (2016). Synthesis of high strength ambient cured geopolymer composite by using low calcium fly ash. Construction and Building Materials, 125, 809–820. doi:10.1016/j.conbuildmat.2016.08.097.

Cao, Y. F., Tao, Z., Pan, Z., & Wuhrer, R. (2018). Effect of calcium aluminate cement on geopolymer concrete cured at ambient temperature. Construction and Building Materials, 191, 242–252. doi:10.1016/j.conbuildmat.2018.09.204.

Fernández-Jiménez, A., Palomo, Á., Vazquez, T., Vallepu, R., Terai, T., & Ikeda, K. (2008). Alkaline activation of blends of metakaolin and calcium aluminate. Journal of the American Ceramic Society, 91(4), 1231–1236. doi:10.1111/j.1551-2916.2007.02002.x.

Aliabdo, A. A., Abd Elmoaty, A. E. M., & Salem, H. A. (2016). Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance. Construction and Building Materials, 123, 581–593. doi:10.1016/j.conbuildmat.2016.07.043.

Pouhet, R., & Cyr, M. (2016). Formulation and performance of flash metakaolin geopolymer concretes. In Construction and Building Materials (Vol. 120, pp. 150–160). doi:10.1016/j.conbuildmat.2016.05.061.

Mukhametkaliyev, T., Ali, M. H., Kutugin, V., Savinova, O., & Vereschagin, V. (2022). Influence of Mixing Order on the Synthesis of Geopolymer Concrete. Polymers, 14(21). doi:10.3390/polym14214777.

Anggarini, U., & Sukmana, N. C. (2016). Synthesis and characterization of geopolymer from bottom ash and rice husk ash. IOP Conference Series: Materials Science and Engineering, 107. doi:10.1088/1757-899X/107/1/012022.

Sore, S. O., Messan, A., Prud’Homme, E., Escadeillas, G., & Tsobnang, F. (2020). Comparative Study on Geopolymer Binders Based on Two Alkaline Solutions (NaOH and KOH). Journal of Minerals and Materials Characterization and Engineering, 08(06), 407–420. doi:10.4236/jmmce.2020.86026.

NF EN 12350 – 2. (2019). Tests for fresh concrete - Part 2: slump test. AFNOR, Standard Organization, Paris, France.

Albitar, M., Mohamed Ali, M. S., Visintin, P., & Drechsler, M. (2017). Durability evaluation of geopolymer and conventional concretes. Construction and Building Materials, 136, 374–385. doi:10.1016/j.conbuildmat.2017.01.056.

Mohamed, O. A., Al-Khattab, R., & Al-Hawat, W. (2022). Resistance to acid degradation, sorptivity, and setting time of geopolymer mortars. Frontiers of Structural and Civil Engineering, 16(6), 781–791. doi:10.1007/s11709-022-0862-9.

Cassagnabère, F., Lachemi, M., Mouret, M., & Escadeillas, G. (2011). Performance characterization of a ternary binder based on cement, slag and metakaolin. Canadian Journal of Civil Engineering, 38(8), 837–848. doi:10.1139/l11-043.

Ntimugura, F., Sore, S. O., Bello, L., & Messan, A. (2017). The Influence of Metakaolin from Saaba (Burkina Faso) over Physico-Mechanical and Durability Properties of Mortars. Open Journal of Civil Engineering, 07(03), 389–408. doi:10.4236/ojce.2017.73027.

Kumar, P., Pankar, C., Manish, D., & Santhi, A. S. (2018). Study of mechanical and microstructural properties of geopolymer concrete with GGBS and Metakaolin. Materials Today: Proceedings, 5(14), 28127–28135. doi:10.1016/j.matpr.2018.10.054.

Askarian, M., Tao, Z., Adam, G., & Samali, B. (2018). Mechanical properties of ambient cured one-part hybrid OPC-geopolymer concrete. Construction and Building Materials, 186, 330–337. doi:10.1016/j.conbuildmat.2018.07.160.

Alexander, M., Bertron, A., & De Belie, N. (2013). Performance of Cement-Based Materials in Aggressive Aqueous Environments. RILEM State-of-the-Art Reports, Springer, Dordrecht, Netherlands. doi:10.1007/978-94-007-5413-3.

Monteny, J., Vincke, E., Beeldens, A., De Belie, N., Taerwe, L., Van Gemert, D., & Verstraete, W. (2000). Chemical, microbiological, and in situ test methods for biogenic sulfuric acid corrosion of concrete. Cement and Concrete Research, 30(4), 623–634. doi:10.1016/S0008-8846(00)00219-2.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-07-04


  • There are currently no refbacks.

Copyright (c) 2023 Seick Omar SORE, Yawo Daniel ADUFU, Philbert Nshimiyimana, Adamah MESSAN, Gilles ESCADEILLAS

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.