Effect of Portland Cement on Mechanical and Durability Properties of Geopolymer Concrete at Ambient Temperature
Abstract
Doi: 10.28991/CEJ-2023-09-07-04
Full Text: PDF
Keywords
References
Ighalo, J. O., & Adeniyi, A. G. (2020). A perspective on environmental sustainability in the cement industry. Waste Disposal and Sustainable Energy, 2(3), 161–164. doi:10.1007/s42768-020-00043-y.
Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., & Rangan, B. V. (2004). On the development of fly ash-based geopolymer concrete. ACI Materials Journal, 101(6), 467–472. doi:10.14359/13485.
Kroviakov, S., Zavoloka, M., Dudnik, L., & Kryzhanovskyi, V. (2019). Comparison of Strength and Durability of Concretes Made with Sulfate-Resistant Portland cement and Portland cement with Pozzolana Additive. Elektronički Časopis Građevinskog Fakulteta Osijek, 19, 81–86. doi:10.13167/2019.19.8.
Chen, K., Wu, D., Xia, L., Cai, Q., & Zhang, Z. (2021). Geopolymer concrete durability subjected to aggressive environments – A review of influence factors and comparison with ordinary Portland cement. Construction and Building Materials, 279, 122496. doi:10.1016/j.conbuildmat.2021.122496.
Abhilash, P., Sashidhar, C., & Reddy, I. R. (2016). Strength properties of Fly ash and GGBS based Geo-polymer Concrete. International Journal of ChemTech Research, 9(3), 350-356.
Ali, A. A., Al-Attar, T. S., & Abbas, W. A. (2022). A Statistical Model to Predict the Strength Development of Geopolymer Concrete Based on SiO2/Al2O3 Ratio Variation. Civil Engineering Journal (Iran), 8(3), 454–471. doi:10.28991/CEJ-2022-08-03-04.
El-Dieb, A. S., & Kanaan, D. M. (2018). Ceramic waste powder an alternative cement replacement–Characterization and evaluation. Sustainable Materials and Technologies, 17, e00063. doi:10.1016/j.susmat.2018.e00063.
McLellan, B. C., Williams, R. P., Lay, J., Van Riessen, A., & Corder, G. D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. Journal of Cleaner Production, 19(9–10), 1080–1090. doi:10.1016/j.jclepro.2011.02.010.
Nath, P., & Sarker, P. K. (2015). Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cement and Concrete Composites, 55, 205–214. doi:10.1016/j.cemconcomp.2014.08.008.
Joshi, S. V., & Kadu, M. S. (2012). Role of Alkaline Activator in Development of Eco-friendly Fly Ash Based Geo Polymer Concrete. International Journal of Environmental Science and Development, 417–421. doi:10.7763/ijesd.2012.v3.258.
Ramujee, K., & Potharaju, M. (2017). Mechanical Properties of Geopolymer Concrete Composites. Materials Today: Proceedings, 4(2), 2937–2945. doi:10.1016/j.matpr.2017.02.175.
Nazari, A., Bagheri, A., Sanjayan, J. G., Dao, M., Mallawa, C., Zannis, P., & Zumbo, S. (2019). Thermal shock reactions of Ordinary Portland cement and geopolymer concrete: Microstructural and mechanical investigation. Construction and Building Materials, 196, 492–498. doi:10.1016/j.conbuildmat.2018.11.098.
Nath, P., & Sarker, P. K. (2017). Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Construction and Building Materials, 130, 22–31. doi:10.1016/j.conbuildmat.2016.11.034.
Mehta, A., & Siddique, R. (2017). Properties of low-calcium fly ash based geopolymer concrete incorporating OPC as partial replacement of fly ash. Construction and Building Materials, 150, 792–807. doi:10.1016/j.conbuildmat.2017.06.067.
Khan, M. Z. N., Shaikh, F. Uddin A., Hao, Y., & Hao, H. (2016). Synthesis of high strength ambient cured geopolymer composite by using low calcium fly ash. Construction and Building Materials, 125, 809–820. doi:10.1016/j.conbuildmat.2016.08.097.
Cao, Y. F., Tao, Z., Pan, Z., & Wuhrer, R. (2018). Effect of calcium aluminate cement on geopolymer concrete cured at ambient temperature. Construction and Building Materials, 191, 242–252. doi:10.1016/j.conbuildmat.2018.09.204.
Fernández-Jiménez, A., Palomo, Á., Vazquez, T., Vallepu, R., Terai, T., & Ikeda, K. (2008). Alkaline activation of blends of metakaolin and calcium aluminate. Journal of the American Ceramic Society, 91(4), 1231–1236. doi:10.1111/j.1551-2916.2007.02002.x.
Aliabdo, A. A., Abd Elmoaty, A. E. M., & Salem, H. A. (2016). Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance. Construction and Building Materials, 123, 581–593. doi:10.1016/j.conbuildmat.2016.07.043.
Pouhet, R., & Cyr, M. (2016). Formulation and performance of flash metakaolin geopolymer concretes. In Construction and Building Materials (Vol. 120, pp. 150–160). doi:10.1016/j.conbuildmat.2016.05.061.
Mukhametkaliyev, T., Ali, M. H., Kutugin, V., Savinova, O., & Vereschagin, V. (2022). Influence of Mixing Order on the Synthesis of Geopolymer Concrete. Polymers, 14(21). doi:10.3390/polym14214777.
Anggarini, U., & Sukmana, N. C. (2016). Synthesis and characterization of geopolymer from bottom ash and rice husk ash. IOP Conference Series: Materials Science and Engineering, 107. doi:10.1088/1757-899X/107/1/012022.
Sore, S. O., Messan, A., Prud’Homme, E., Escadeillas, G., & Tsobnang, F. (2020). Comparative Study on Geopolymer Binders Based on Two Alkaline Solutions (NaOH and KOH). Journal of Minerals and Materials Characterization and Engineering, 08(06), 407–420. doi:10.4236/jmmce.2020.86026.
NF EN 12350 – 2. (2019). Tests for fresh concrete - Part 2: slump test. AFNOR, Standard Organization, Paris, France.
Albitar, M., Mohamed Ali, M. S., Visintin, P., & Drechsler, M. (2017). Durability evaluation of geopolymer and conventional concretes. Construction and Building Materials, 136, 374–385. doi:10.1016/j.conbuildmat.2017.01.056.
Mohamed, O. A., Al-Khattab, R., & Al-Hawat, W. (2022). Resistance to acid degradation, sorptivity, and setting time of geopolymer mortars. Frontiers of Structural and Civil Engineering, 16(6), 781–791. doi:10.1007/s11709-022-0862-9.
Cassagnabère, F., Lachemi, M., Mouret, M., & Escadeillas, G. (2011). Performance characterization of a ternary binder based on cement, slag and metakaolin. Canadian Journal of Civil Engineering, 38(8), 837–848. doi:10.1139/l11-043.
Ntimugura, F., Sore, S. O., Bello, L., & Messan, A. (2017). The Influence of Metakaolin from Saaba (Burkina Faso) over Physico-Mechanical and Durability Properties of Mortars. Open Journal of Civil Engineering, 07(03), 389–408. doi:10.4236/ojce.2017.73027.
Kumar, P., Pankar, C., Manish, D., & Santhi, A. S. (2018). Study of mechanical and microstructural properties of geopolymer concrete with GGBS and Metakaolin. Materials Today: Proceedings, 5(14), 28127–28135. doi:10.1016/j.matpr.2018.10.054.
Askarian, M., Tao, Z., Adam, G., & Samali, B. (2018). Mechanical properties of ambient cured one-part hybrid OPC-geopolymer concrete. Construction and Building Materials, 186, 330–337. doi:10.1016/j.conbuildmat.2018.07.160.
Alexander, M., Bertron, A., & De Belie, N. (2013). Performance of Cement-Based Materials in Aggressive Aqueous Environments. RILEM State-of-the-Art Reports, Springer, Dordrecht, Netherlands. doi:10.1007/978-94-007-5413-3.
Monteny, J., Vincke, E., Beeldens, A., De Belie, N., Taerwe, L., Van Gemert, D., & Verstraete, W. (2000). Chemical, microbiological, and in situ test methods for biogenic sulfuric acid corrosion of concrete. Cement and Concrete Research, 30(4), 623–634. doi:10.1016/S0008-8846(00)00219-2.
DOI: 10.28991/CEJ-2023-09-07-04
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Seick Omar SORE, Yawo Daniel ADUFU, Philbert Nshimiyimana, Adamah MESSAN, Gilles ESCADEILLAS
This work is licensed under a Creative Commons Attribution 4.0 International License.