Punching Capacity of UHPC Post Tensioned Flat Slabs with and Without Shear Reinforcement: An Experimental Study
Downloads
Doi: 10.28991/CEJ-2023-09-03-06
Full Text: PDF
Downloads
[2] Ismail, M. (2015). Behavior of UHPC structural members subjected to pure torsion. Volume 24, Kassel University Press, Kassel, Germany.
[3] Abdujabborovich, M. R., & Ugli, N. N. R. (2016). Development and application of ultra-high performance concrete. Innovative Science, (5-2 (17)), 130-132. (In Russian).
[4] Elhegazy, H., Ebid, A., Mahdi, I., Haggag, S., & Abdul-Rashied, I. (2021). Implementing QFD in decision making for selecting the optimal structural system for buildings. Construction Innovation, 21(2), 345–360. doi:10.1108/CI-12-2019-0149.
[5] Elhegazy, H., Ebid, A. M., Mahdi, I. M., Aboul Haggag, S. Y., & Rashid, I. A. (2020). Selecting optimum structural system for R.C. multi-story buildings considering direct cost. Structures, 24, 296–303. doi:10.1016/j.istruc.2020.01.039.
[6] Einpaul, J., Bujnak, J., Ruiz, M. F., & Muttoni, A. (2016). Study on influence of column size and slab slenderness on punching strength. ACI Structural Journal, 113(1), 135–146. doi:10.14359/51687945.
[7] Sagaseta, J., Tassinari, L., Fernández Ruiz, M., & Muttoni, A. (2014). Punching of flat slabs supported on rectangular columns. Engineering Structures, 77, 17–33. doi:10.1016/j.engstruct.2014.07.007.
[8] Amin, M., Zeyad, A. M., Tayeh, B. A., & Agwa, I. S. (2022). Effect of ferrosilicon and silica fume on mechanical, durability, and microstructure characteristics of ultra-high-performance concrete. Construction and Building Materials, 320, 126233. doi:10.1016/j.conbuildmat.2021.126233.
[9] Azmee, N. M., & Shafiq, N. (2018). Ultra-high performance concrete: From fundamental to applications. In Case Studies in Construction Materials 9, 1–15. doi:10.1016/j.cscm.2018.e00197.
[10] Wu, X., Yu, S., Xue, S., Kang, T. H. K., & Hwang, H. J. (2019). Punching shear strength of UHPFRC-RC composite flat plates. Engineering Structures, 184, 278–286. doi:10.1016/j.engstruct.2019.01.099.
[11] Inácio, M. M. G., Lapi, M., & Pinho Ramos, A. (2020). Punching of reinforced concrete flat slabs – Rational use of high strength concrete. Engineering Structures, 206(110194), 1–13. doi:10.1016/j.engstruct.2020.110194.
[12] Menna, D. W., & Genikomsou, A. S. (2021). Punching Shear Response of Concrete Slabs Strengthened with Ultrahigh-Performance Fiber-Reinforced Concrete Using Finite-Element Methods. Practice Periodical on Structural Design and Construction, 26(1), 04020057–1 – 04020057–14. doi:10.1061/(asce)sc.1943-5576.0000546.
[13] Dogu, M., & Menkulasi, F. (2020). A flexural design methodology for UHPC beams posttensioned with unbonded tendons. Engineering Structures, 207(110193), 1–22. doi:10.1016/j.engstruct.2020.110193.
[14] Isufi, B., & Pinho Ramos, A. (2021). A review of tests on slab-column connections with advanced concrete materials. Structures, 32, 849–860. doi:10.1016/j.istruc.2021.03.036.
[15] Sharma, A., Thakur, P., Vashisht, R., & Shukla, A. (2022). Durability Evaluation of Normal and High Performance Concrete. Global Journal of Researches in Engineering, 22(1), 45–51. doi:10.34257/gjreevol22is1pg45.
[16] Muhammed, T. A., & Rahim Karim, F. (2022). The Influence of Drop Panel's Dimensions on the Punching Shear Resistance in Ultra-High-Performance Fiber-Reinforced Concrete Flat Slabs. Construction, 2(1), 55–65. doi:10.15282/construction.v2i1.7581.
[17] Elsayed, M., Abdel-Hady, I., Abdel-Hafez, L. M., & Tawfic, Y. R. (2022). Strengthening of slab-column connections using ultra high-performance fiber concrete. Case Studies in Construction Materials, 17(e01710), 1–12. doi:10.1016/j.cscm.2022.e01710.
[18] GoŠ‚dyn, M., & Urban, T. (2022). UHPFRC hidden capitals as an alternative method for increasing punching shear resistance of LWAC flat slabs. Engineering Structures, 271, 1–18. doi:10.1016/j.engstruct.2022.114906.
[19] Ebid, A., & Deifalla, A. (2022). Using Artificial Intelligence Techniques to Predict Punching Shear Capacity of Lightweight Concrete Slabs. Materials, 15(8), 2732. doi:10.3390/ma15082732.
[20] Elsheshtawy, S. S., Shoeib, A. K., Hassanin, A., & Ors, D. M. (2022). Influence of the Distribution and Level of Post-Tensioning Force on the Punching Shear of Flat Slabs. Designs, 7(1), 1. doi:10.3390/designs7010001.
[21] Ramadan, M., Ors, D. M., Farghal, A. M., Afifi, A., Zaher, A. H., & Ebid, A. M. (2023). Punching shear behavior of HSC & UHPC post tensioned flat slabs – An experimental study. Results in Engineering, 17, 100882. doi:10.1016/j.rineng.2023.100882.
[22] SIKA. (2019). SikaCem®-201 Intraplast: Additive for Cementitious Cable Grout. Product Data Sheet, SIKA, Nilai, Malaysia. Available online: https://mys.sika.com/dms/getdocument.get/07463d1b-e195-4a6f-b68d-d7f458a8f423/sikacem_-201_intraplast.pdf. (Accessed on January 2023).
[23] SIKA. (2014). Sika Fume®-HR Concrete Additive. Product Data Sheet, SIKA, Nilai, Malaysia. Available online: https://egy.sika.com/content/dam/dms/eg01/e/Sika%20Fume%20HR.pdf (Accessed on January 2023).
[24] SIKA. (2020). Sika® Quartz 02 IN: Quartz Based Broadcast Sand for Anti-Skid flooring Applications. Product Data Sheet, SIKA, Nilai, Malaysia. Available online: https://ind.sika.com/content/dam/dms/in01/h/sika_quartz_02_in.pdf (Accessed on January 2023).
[25] SIKA. (2015). Sika ViscoCrete®-3425: High Performance Superplasticiser Concrete Admixture. Product Data Sheet, SIKA, Nilai, Malaysia. Available online: https://egy.sika.com/content/dam/dms/eg01/e/Sika%20ViscoCrete%C2%AE%20-3425.pdf (Accessed on January 2023).
[26] BEKAERT. (2018). Bekinox® PES: Stainless steel fibers, blended with polyester fibers for anti-static and conductive textiles. BEKAERT, Zwevegem, Belgium. Available online: https://www.bekaert.com.cn/-/media/Brands2017/China/Files/CD022_ Datasheet-PES.pdf?la=zh-CN (Accessed on January 2023).
[27] ASTM A416/A416M-06. (2010). Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete. ASTM International, Pennsylvania, united States. doi:10.1520/A0416_A0416M-06.
[28] ACI 318M-14. (2014). Building Code Requirements for Structural Concrete and Commentary (ACI 318M-08). American Concrete Institute (ACI), Farmington Hills, United States.
[29] EN 1992-1-1. (2004). Eurocode2: Design of concrete structures. Part 1-1: General rules and rules for buildings. Brussels, Belgium.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.