Punching Capacity of UHPC Post Tensioned Flat Slabs with and Without Shear Reinforcement: An Experimental Study

Ahmed Afifi, Mohamed Ramadan, Ahmed M. Farghal Maree, Ahmed M. Ebid, Amr H. Zaher, Dina M. Ors


Punching capacity is one of the main items in the design of both pre-stressed and non-pre-stressed flat slabs. All international design codes include provisions to prevent this type of failure. Unfortunately, there is no code provision for UHPC yet, and hence, the aim of this research is to experimentally investigate the impact of column dimensions and punching reinforcement on the punching capacity of post-tensioned slabs and compare the results with the international design codes’ provisions to evaluate its validity. The test program included five slabs with a compressive strength of 120 MPa: one as a control sample, two to study the effect of column size, and the last two to study the effect of punching reinforcement. Comparing the results with the design codes showed that ACI-318 is more accurate with an average deviation of about 5%, while EC2 is more conservative with an average deviation of about 20%. Besides that, punching reinforcement reduces the size of the punching wedge by increasing the crack angle to 28° instead of 22° for slabs without punching reinforcement. Also, the results assure that both ductility and stiffness are enhanced with the increased column dimensions and punching reinforcement ratio.


Doi: 10.28991/CEJ-2023-09-03-06

Full Text: PDF


Ultra-High-Performance Concrete; Post-Tensioning; Flat Slabs; Punching Shear.


Al-Quraishi, H. A. A. (2014). Punching Shear Behavior of UHPC Flat Slabs. Ph.D. Thesis, The University of Kassel, Kassel, Germany.

Ismail, M. (2015). Behavior of UHPC structural members subjected to pure torsion. Volume 24, Kassel University Press, Kassel, Germany.

Abdujabborovich, M. R., & Ugli, N. N. R. (2016). Development and application of ultra-high performance concrete. Innovative Science, (5-2 (17)), 130-132. (In Russian).

Elhegazy, H., Ebid, A., Mahdi, I., Haggag, S., & Abdul-Rashied, I. (2021). Implementing QFD in decision making for selecting the optimal structural system for buildings. Construction Innovation, 21(2), 345–360. doi:10.1108/CI-12-2019-0149.

Elhegazy, H., Ebid, A. M., Mahdi, I. M., Aboul Haggag, S. Y., & Rashid, I. A. (2020). Selecting optimum structural system for R.C. multi-story buildings considering direct cost. Structures, 24, 296–303. doi:10.1016/j.istruc.2020.01.039.

Einpaul, J., Bujnak, J., Ruiz, M. F., & Muttoni, A. (2016). Study on influence of column size and slab slenderness on punching strength. ACI Structural Journal, 113(1), 135–146. doi:10.14359/51687945.

Sagaseta, J., Tassinari, L., Fernández Ruiz, M., & Muttoni, A. (2014). Punching of flat slabs supported on rectangular columns. Engineering Structures, 77, 17–33. doi:10.1016/j.engstruct.2014.07.007.

Amin, M., Zeyad, A. M., Tayeh, B. A., & Agwa, I. S. (2022). Effect of ferrosilicon and silica fume on mechanical, durability, and microstructure characteristics of ultra-high-performance concrete. Construction and Building Materials, 320, 126233. doi:10.1016/j.conbuildmat.2021.126233.

Azmee, N. M., & Shafiq, N. (2018). Ultra-high performance concrete: From fundamental to applications. In Case Studies in Construction Materials 9, 1–15. doi:10.1016/j.cscm.2018.e00197.

Wu, X., Yu, S., Xue, S., Kang, T. H. K., & Hwang, H. J. (2019). Punching shear strength of UHPFRC-RC composite flat plates. Engineering Structures, 184, 278–286. doi:10.1016/j.engstruct.2019.01.099.

Inácio, M. M. G., Lapi, M., & Pinho Ramos, A. (2020). Punching of reinforced concrete flat slabs – Rational use of high strength concrete. Engineering Structures, 206(110194), 1–13. doi:10.1016/j.engstruct.2020.110194.

Menna, D. W., & Genikomsou, A. S. (2021). Punching Shear Response of Concrete Slabs Strengthened with Ultrahigh-Performance Fiber-Reinforced Concrete Using Finite-Element Methods. Practice Periodical on Structural Design and Construction, 26(1), 04020057–1 – 04020057–14. doi:10.1061/(asce)sc.1943-5576.0000546.

Dogu, M., & Menkulasi, F. (2020). A flexural design methodology for UHPC beams posttensioned with unbonded tendons. Engineering Structures, 207(110193), 1–22. doi:10.1016/j.engstruct.2020.110193.

Isufi, B., & Pinho Ramos, A. (2021). A review of tests on slab-column connections with advanced concrete materials. Structures, 32, 849–860. doi:10.1016/j.istruc.2021.03.036.

Sharma, A., Thakur, P., Vashisht, R., & Shukla, A. (2022). Durability Evaluation of Normal and High Performance Concrete. Global Journal of Researches in Engineering, 22(1), 45–51. doi:10.34257/gjreevol22is1pg45.

Muhammed, T. A., & Rahim Karim, F. (2022). The Influence of Drop Panel’s Dimensions on the Punching Shear Resistance in Ultra-High-Performance Fiber-Reinforced Concrete Flat Slabs. Construction, 2(1), 55–65. doi:10.15282/construction.v2i1.7581.

Elsayed, M., Abdel-Hady, I., Abdel-Hafez, L. M., & Tawfic, Y. R. (2022). Strengthening of slab-column connections using ultra high-performance fiber concrete. Case Studies in Construction Materials, 17(e01710), 1–12. doi:10.1016/j.cscm.2022.e01710.

Gołdyn, M., & Urban, T. (2022). UHPFRC hidden capitals as an alternative method for increasing punching shear resistance of LWAC flat slabs. Engineering Structures, 271, 1–18. doi:10.1016/j.engstruct.2022.114906.

Ebid, A., & Deifalla, A. (2022). Using Artificial Intelligence Techniques to Predict Punching Shear Capacity of Lightweight Concrete Slabs. Materials, 15(8), 2732. doi:10.3390/ma15082732.

Elsheshtawy, S. S., Shoeib, A. K., Hassanin, A., & Ors, D. M. (2022). Influence of the Distribution and Level of Post-Tensioning Force on the Punching Shear of Flat Slabs. Designs, 7(1), 1. doi:10.3390/designs7010001.

Ramadan, M., Ors, D. M., Farghal, A. M., Afifi, A., Zaher, A. H., & Ebid, A. M. (2023). Punching shear behavior of HSC & UHPC post tensioned flat slabs – An experimental study. Results in Engineering, 17, 100882. doi:10.1016/j.rineng.2023.100882.

SIKA. (2019). SikaCem®-201 Intraplast: Additive for Cementitious Cable Grout. Product Data Sheet, SIKA, Nilai, Malaysia. Available online: https://mys.sika.com/dms/getdocument.get/07463d1b-e195-4a6f-b68d-d7f458a8f423/sikacem_-201_intraplast.pdf. (Accessed on January 2023).

SIKA. (2014). Sika Fume®-HR Concrete Additive. Product Data Sheet, SIKA, Nilai, Malaysia. Available online: https://egy.sika.com/content/dam/dms/eg01/e/Sika%20Fume%20HR.pdf (Accessed on January 2023).

SIKA. (2020). Sika® Quartz 02 IN: Quartz Based Broadcast Sand for Anti-Skid flooring Applications. Product Data Sheet, SIKA, Nilai, Malaysia. Available online: https://ind.sika.com/content/dam/dms/in01/h/sika_quartz_02_in.pdf (Accessed on January 2023).

SIKA. (2015). Sika ViscoCrete®-3425: High Performance Superplasticiser Concrete Admixture. Product Data Sheet, SIKA, Nilai, Malaysia. Available online: https://egy.sika.com/content/dam/dms/eg01/e/Sika%20ViscoCrete%C2%AE%20-3425.pdf (Accessed on January 2023).

BEKAERT. (2018). Bekinox® PES: Stainless steel fibers, blended with polyester fibers for anti-static and conductive textiles. BEKAERT, Zwevegem, Belgium. Available online: https://www.bekaert.com.cn/-/media/Brands2017/China/Files/CD022_ Datasheet-PES.pdf?la=zh-CN (Accessed on January 2023).

ASTM A416/A416M-06. (2010). Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete. ASTM International, Pennsylvania, united States. doi:10.1520/A0416_A0416M-06.

ACI 318M-14. (2014). Building Code Requirements for Structural Concrete and Commentary (ACI 318M-08). American Concrete Institute (ACI), Farmington Hills, United States.

EN 1992-1-1. (2004). Eurocode2: Design of concrete structures. Part 1-1: General rules and rules for buildings. Brussels, Belgium.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-03-06


  • There are currently no refbacks.

Copyright (c) 2023 Mohamed Ramadan, Dina M. Ors, Ahmed M. Farghal Maree, Ahmed Afifi, Amr H. Zaher, Ahmed M. Ebid

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.