Marine Resource Recovery Following the COVID-19 Event in Southern Thailand

Sirirat Somchuea, Mullica Jaroensutasinee, Krisanadej Jaroensutasinee


This study investigated coral and reef fish recovery following the COVID-19 event between low and high environmental disturbance reefs at Racha Yai Island, Southern Thailand. Three and four 50-m permanent line transects were set at low and high environmental reefs to collect the percent of live coral cover, fish diversity and abundance, and fish trophic-functional groups based on diet and habitat use. Our results showed a significant rise in the percentage of live coral cover, the number of individual fish, the number of fish species, and species richness at both bays following the COVID-19 lockdown due to a crucial reduction in human activities on the reef. In addition, there were increases in the number of corallivore fishes belonging to Chaetodontidae and Pomacentridae families and a reduction of omnivorous fish at the fish-feeding tourist attraction reefs due during the COVID-19 lockdown due to reducing fish-feeding tourism. This indicated that restricted human activities and reduced anthropogenic stress on a coral reef may have substantial short-term impacts on reef fish diversity. Our insights could help designate guidelines to manage tourist impacts on coral reefs and aid in their prolonged persistence.


Doi: 10.28991/CEJ-2022-08-11-011

Full Text: PDF


Coral Reefs; Fish; Shannon Diversity; Species Richness; Human Activity.


China, L., Freemantle, N., Forrest, E., Kallis, Y., Ryder, S. D., Wright, G., Portal, A. J., Becares Salles, N., Gilroy, D. W., & O’Brien, A. (2021). A Randomized Trial of Albumin Infusions in Hospitalized Patients with Cirrhosis. New England Journal of Medicine, 384(9), 808–817. doi:10.1056/nejmoa2022166.

Patterson Edward, J. K., Jayanthi, M., Malleshappa, H., Immaculate Jeyasanta, K., Laju, R. L., Patterson, J., Diraviya Raj, K., Mathews, G., Marimuthu, A. S., & Grimsditch, G. (2021). COVID-19 lockdown improved the health of coastal environment and enhanced the population of reef-fish. Marine Pollution Bulletin, 165, 112–124. doi:10.1016/j.marpolbul.2021.112124.

Rice, W. L., Mateer, T. J., Reigner, N., Newman, P., Lawhon, B., & Taff, B. D. (2020). Changes in recreational behaviors of outdoor enthusiasts during the COVID-19 pandemic: analysis across urban and rural communities. Journal of Urban Ecology, 6(1), 20. doi:10.1093/jue/juaa020.

Masood, N., Zakaria, M. P., Halimoon, N., Aris, A. Z., Magam, S. M., Kannan, N., Mustafa, S., Ali, M. M., Keshavarzifard, M., Vaezzadeh, V., Alkhadher, S. A. A., & Al-Odaini, N. A. (2016). Anthropogenic waste indicators (AWIs), particularly PAHs and LABs, in Malaysian sediments: Application of aquatic environment for identifying anthropogenic pollution. Marine Pollution Bulletin, 102(1), 160–175. doi:10.1016/j.marpolbul.2015.11.032.

Jones, K. R., Klein, C. J., Halpern, B. S., Venter, O., Grantham, H., Kuempel, C. D., Shumway, N., Friedlander, A. M., Possingham, H. P., & Watson, J. E. M. (2018). The Location and Protection Status of Earth’s Diminishing Marine Wilderness. Current Biology, 28(15), 2506-2512.e3. doi:10.1016/j.cub.2018.06.010.

Lecchini, D., Brooker, R. M., Waqalevu, V., Gairin, E., Minier, L., Berthe, C., Besineau, R., Blay, G., Maueau, T., Sturny, V., Bambridge, T., Sang, G. T., & Bertucci, F. (2021). Effects of COVID-19 pandemic restrictions on coral reef fishes at eco-tourism sites in Bora-Bora, French Polynesia. Marine Environmental Research, 170, 105451. doi:10.1016/j.marenvres.2021.105451.

Burke, L., Reytar, K., Spalding, M., & Perry, A. (2011). Reefs at risk revisited: technical notes on modeling threats to the world’s coral reefs. World Resources Institute, Washington, United States.

Hughes, T. P., Kerry, J. T., Álvarez-Noriega, M., Álvarez-Romero, J. G., Anderson, K. D., Baird, A. H., Babcock, R. C., Beger, M., Bellwood, D. R., Berkelmans, R., Bridge, T. C., Butler, I. R., Byrne, M., Cantin, N. E., Comeau, S., Connolly, S. R., Cumming, G. S., Dalton, S. J., Diaz-Pulido, G., … Wilson, S. K. (2017). Global warming and recurrent mass bleaching of corals. Nature, 543(7645), 373–377. doi:10.1038/nature21707.

Munday, P. L. (2004). Habitat loss, resource specialization, and extinction on coral reefs. Global Change Biology, 10(10), 1642–1647. doi:10.1111/j.1365-2486.2004.00839.x.

Riegl, B., Bruckner, A., Coles, S. L., Renaud, P., & Dodge, R. E. (2009). Coral reefs: Threats and conservation in an era of global change. Annals of the New York Academy of Sciences, 1162, 136–186. doi:10.1111/j.1749-6632.2009.04493.x.

Rouphael, A. B., & Inglis, G. J. (2001). Take only photographs and leave only footprints?: An experimental study of the impacts of underwater photographers on coral reef dive sites. Biological Conservation, 100(3), 281–287. doi:10.1016/S0006-3207(01)00032-5.

Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. University of Illinois Press, Champaign, United States.

Manenti, R., Mori, E., Di Canio, V., Mercurio, S., Picone, M., Caffi, M., Brambilla, M., Ficetola, G. F., & Rubolini, D. (2020). The good, the bad and the ugly of COVID-19 lockdown effects on wildlife conservation: Insights from the first European locked down country. Biological Conservation, 249, 108728. doi:10.1016/j.biocon.2020.108728.

Valerio, M., Mann, O., & Shashar, N. (2019). “Boo! Did we scare you?”: behavioral responses of reef-associated fish, prawn gobies (Amblyeleotris Steinitzi and Amblyeleotris Sungami) to anthropogenic diver disturbance. Marine Biology, 166(1), 1–9. doi:10.1007/s00227-018-3447-3.

Zellmer, A. J., Wood, E. M., Surasinghe, T., Putman, B. J., Pauly, G. B., Magle, S. B., Lewis, J. S., Kay, C. A. M., & Fidino, M. (2020). What can we learn from wildlife sightings during the COVID-19 global shutdown? Ecosphere, 11(8), 3215. doi:10.1002/ecs2.3215.

Steneck, R. S., & Dethier, M. N. (1994). A Functional Group Approach to the Structure of Algal-Dominated Communities. Oikos, 69(3), 476. doi:10.2307/3545860.

Triki, Z., & Bshary, R. (2019). Fluctuations in coral reef fish densities after environmental disturbances on the northern Great Barrier Reef. PeerJ, 2019(4), 6720. doi:10.7717/peerj.6720.

Benevides, L. J., Cardozo-Ferreira, G. C., Ferreira, C. E. L., Pereira, P. H. C., Pinto, T. K., & Sampaio, C. L. S. (2019). Fear-induced behavioural modifications in damselfishes can be diver-triggered. Journal of Experimental Marine Biology and Ecology, 514–515, 34–40. doi:10.1016/j.jembe.2019.03.009.

Brunnschweiler, J. M., & Earle, J. L. (2006). A contribution to marine life conservation efforts in the South Pacific: The Shark Reef Marine Reserve, Fiji. Cybium, 30(4), 133-139. doi:10.26028/cybium/2006-304supp-018.

Drew, J. A., & McKeon, M. (2019). Shark-based tourism presents opportunities for facultative dietary shift in coral reef fish. PLoS ONE, 14(8), 221781. doi:10.1371/journal.pone.0221781.

Feitosa, C. V., De Carvalho Teixeira Chaves, L. S., Ferreira, B. P., & De Arau- Jo, M. E. (2012). Recreational fish feeding inside Brazilian MPAs: Impacts on reef fish community structure. Journal of the Marine Biological Association of the United Kingdom, 92(7), 1525–1533. doi:10.1017/S0025315412000136.

Milazzo, M., Anastasi, I., & Willis, T. J. (2006). Recreational fish feeding affects coastal fish behavior and increases frequency of predation on damselfish Chromis chromis nests. Marine Ecology Progress Series, 310, 165–172. doi:10.3354/meps310165.

Jaroensutasinee, K., Somchuea, S., & Jaroensutasinee, M. (2021). Coral and reef fish community recovery following the 2010 extreme ocean warming event (mass bleaching event) at Thailand. Journal of Animal Behaviour and Biometeorology, 9(1), 1–11. doi:10.31893/JABB.21004.

English, S., Wilkinson, C., & Baker, V. (1997). Survey manual for tropical marine resources. Australian Institute of Marine Science, Queensland, Australia.

Titus, B. M., Daly, M., & Exton, D. A. (2015). Do reef fish habituate to diver presence? Evidence from two reef sites with contrasting historical levels of SCUBA intensity in the Bay Islands, Honduras. PLoS ONE, 10(3), 119645. doi:10.1371/journal.pone.0119645.

Triki, Z., Wismer, S., Levorato, E., & Bshary, R. (2018). A decrease in the abundance and strategic sophistication of cleaner fish after environmental perturbations. Global Change Biology, 24(1), 481–489. doi:10.1111/gcb.13943.

Wismer, S., Pinto, A. I., Vail, A. L., Grutter, A. S., & Bshary, R. (2014). Variation in Cleaner Wrasse Cooperation and Cognition: Influence of the Developmental Environment? Ethology, 120(6), 519–531. doi:10.1111/eth.12223.

Allen, G. R. (1991). Damselfishes of the world. Mergus, Addis Ababa, Ethiopia.

Lieske, E., & Myers, R. (2001). Reef Fishes of the World: Indo Pacific and Caribbean. Periplus, Singapore.

Durville, P., Chabanet, P., & Quod, J. (2004). Visual Census of the Reef Fishes in the Natural Reserve of the Glorieuses Islands (Western Indian Ocean). Western Indian Ocean Journal of Marine Science, 2(2), 95–104. doi:10.4314/wiojms.v2i2.28435.

Froese, R. and D. Pauly. 2015. Welcome to FishBase. In: Froese, R. and D. Pauly. Editors. 2015. FishBase. World Wide Web electronic publication. Version (10/2015). Available online: FishBase_RFroese_etal2015.pdf. (accessed on May 2022)

Randall J. E. (2005) Reef and Shore Fishes of the South Pacific: New Caledonia to Tahiti and the Pitcairn Islands. University of Hawaii Press, Honolulu, United States.

Kohler, K. E., & Gill, S. M. (2006). Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Computers and Geosciences, 32(9), 1259–1269. doi:10.1016/j.cageo.2005.11.009.

Krippendorff, K. (2009). Mathematical theory of communication. Departmental Papers (ASC), University of Pennsylvania, Pennsylvania, United States.

Pielou, E. C. (1966). Shannon’s Formula as a Measure of Specific Diversity: Its Use and Misuse. The American Naturalist, 100(914), 463–465. doi:10.1086/282439.

Claudet, J., Pelletier, D., Jouvenel, J. Y., Bachet, F., & Galzin, R. (2006). Assessing the effects of marine protected area (MPA) on a reef fish assemblage in a northwestern Mediterranean marine reserve: Identifying community-based indicators. Biological Conservation, 130(3), 349–369. doi:10.1016/j.biocon.2005.12.030.

Wilson, S. K., Graham, N. A. J., & Polunin, N. V. C. (2007). Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Marine Biology, 151(3), 1069–1076. doi:10.1007/s00227-006-0538-3.

Polidoro, B., & Carpenter, K. (2013). Dynamics of coral reef recovery. Science, 340(6128), 34–35. doi:10.1126/science.1236833.

Marimuthu, N., Jerald Wilson, J., Vinithkumar, N. V., & Kirubagaran, R. (2013). Coral reef recovery status in south Andaman Islands after the bleaching event 2010. Journal of Ocean University of China, 12(1), 91–96. doi:10.1007/s11802-013-2014-2.

Morri, C., Montefalcone, M., Lasagna, R., Gatti, G., Rovere, A., Parravicini, V., Baldelli, G., Colantoni, P., & Bianchi, C. N. (2015). Through bleaching and tsunami: Coral reef recovery in the Maldives. Marine Pollution Bulletin, 98(1–2), 188–200. doi:10.1016/j.marpolbul.2015.06.050.

Houk, P., Musburger, C., & Wiles, P. (2010). Water quality and herbivory interactively drive coral-reef recovery patterns in american samoa. PLoS ONE, 5(11), 13913. doi:10.1371/journal.pone.0013913.

Lukoschek, V., Cross, P., Torda, G., Zimmerman, R., & Willis, B. L. (2013). The Importance of Coral Larval Recruitment for the Recovery of Reefs Impacted by Cyclone Yasi in the Central Great Barrier Reef. PLoS ONE, 8(6), 65363. doi:10.1371/journal.pone.0065363.

Giglio, V. J., Luiz, O. J., & Ferreira, C. E. L. (2020). Ecological impacts and management strategies for recreational diving: A review. Journal of Environmental Management, 256, 109949. doi:10.1016/j.jenvman.2019.109949.

Frid, A., & Dill, L. (2002). Human-caused disturbance stimuli as a form of predation risk. Ecology and Society, 6(1), 11. doi:10.5751/es-00404-060111.

Gaynor, K. M., Hojnowski, C. E., Carter, N. H., & Brashares, J. S. (2018). The influence of human disturbance on wildlife nocturnality. Science, 360(6394), 1232–1235. doi:10.1126/science.aar7121.

Gill, J. A., Norris, K., & Sutherland, W. J. (2001). Why behavioural responses may not reflect the population consequences of human disturbance. Biological Conservation, 97(2), 265–268. doi:10.1016/S0006-3207(00)00002-1.

Albuquerque, T., Loiola, M., Nunes, J. de A. C. C., Reis-Filho, J. A., Sampaio, C. L. S., & Leduc, A. O. H. C. (2015). In situ effects of human disturbances on coral reef-fish assemblage structure: temporary and persisting changes are reflected as a result of intensive tourism. Marine and Freshwater Research, 66(1), 23. doi:10.1071/mf13185.

Blowes, S. A., Chase, J. M., Di Franco, A., Frid, O., Gotelli, N. J., Guidetti, P., Knight, T. M., May, F., McGlinn, D. J., Micheli, F., Sala, E., & Belmaker, J. (2020). Mediterranean marine protected areas have higher biodiversity via increased evenness, not abundance. Journal of Applied Ecology, 57(3), 578–589. doi:10.1111/1365-2664.13549.

Coll, M. (2020). Environmental effects of the COVID-19 pandemic from a (marine) ecological perspective. Ethics in Science and Environmental politics, 20, 41-55. doi:10.3354/esep00192.

Silva-Rodríguez, E. A., Gálvez, N., Swan, G. J., Cusack, J. J., & Moreira-Arce, D. (2021). Urban wildlife in times of COVID-19: What can we infer from novel carnivore records in urban areas?. Science of the Total Environment, 765, 142713. doi:10.1016/j.scitotenv.2020.142713.

Pratchett, M. S., Munday, P. L., Wilson, S. K., Graham, N. A. J., Cinner, J. E., Bellwood, D. R., Jones, G. P., Polunin, N. V. C., & McClanahan, T. R. (2008). Effects of climate-induced coral bleaching on coral-reef fishes-ecological and economic consequences. Oceanography and Marine Biology, 46, 251–296. doi:10.1201/9781420065756.ch6.

Wilson, S. K., Fisher, R., Pratchett, M. S., Graham, N. A. J., Dulvy, N. K., Turner, R. A., Cakacaka, A., Polunin, N. V. C., & Rushton, S. P. (2008). Exploitation and habitat degradation as agents of change within coral reef fish communities. Global Change Biology, 14(12), 2796–2809. doi:10.1111/j.1365-2486.2008.01696.x.

Allen, G. (1999). Marine Fishes of South-East Asia: A field guide for anglers and divers. Periplus, North Clarendon, United States.

Forrester, G. E. (1990). Factors influencing the juvenile demography of a coral reef fish. Ecology, 71(5), 1666–1681. doi:10.2307/1937576.

Prabowo, B., Fahlevy, K., Putra, N. F. D., Rizqydiani, M., Rahman, B. M. K., Habibie, A., Subhan, B., & Madduppa, H. (2019). Trophic structure of reef fishes and relationship of corallivore fishes with hard coral in Kepulauan Seribu, Jakarta. IOP Conference Series: Earth and Environmental Science, 278(1), 12059. doi:10.1088/1755-1315/278/1/012059.

Burkepile, D. E., & Hay, M. E. (2008). Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proceedings of the National Academy of Sciences, 105(42), 16201–16206. doi:10.1073/pnas.0801946105.

Chimienti, G., De Padova, D., Adamo, M., Mossa, M., Bottalico, A., Lisco, A., ... & Mastrototaro, F. (2021). Effects of global warming on Mediterranean coral forests. Scientific reports, 11(1), 1-14. doi:10.1038/s41598-021-00162-4.

Spalding, M., Burke, L., Wood, S. A., Ashpole, J., Hutchison, J., & zu Ermgassen, P. (2017). Mapping the global value and distribution of coral reef tourism. Marine Policy, 82, 104–113. doi:10.1016/j.marpol.2017.05.014.

Fabricius, C., Folke, C., Cundill, G., & Schultz, L. (2007). Powerless spectators, coping actors, and adaptive co-managers: A synthesis of the role of communities in ecosystem management. Ecology and Society, 12(1), 29. doi:10.5751/ES-02072-120129.

Cramer, K. L., O’Dea, A., Clark, T. R., Zhao, J. X., & Norris, R. D. (2017). Prehistorical and historical declines in Caribbean coral reef accretion rates driven by loss of parrotfish. Nature Communications, 8, 14160. doi:10.1038/ncomms14160.

Patterson, J., Wilhelmsson, D., & Edward, J. K. P. (2016). Co-management: partnerships for achieving effective resource outcomes on coral reefs–partnerships with and among communities and stakeholders. Proceedings of the 13th International Coral reef symposium, Honolulu, United States.

Bruggemann, J. H., Kuyper, M. W. M., & Breeman, A. M. (1994). Comparative analysis of foraging and habitat use by the sympatric Caribbean parrotfish Scarus vetula and Sparisoma viride (Scaridae). Marine Ecology Progress Series, 112(1–2), 51–66. doi:10.3354/meps112051.

Burkepile, D. E., & Hay, M. E. (2011). Feeding complementarity versus redundancy among herbivorous fishes on a Caribbean reef. Coral Reefs, 30(2), 351–362. doi:10.1007/s00338-011-0726-6.

Lewis, S. M., & Wainwright, P. C. (1985). Herbivore abundance and grazing intensity on a Caribbean coral reef. Journal of Experimental Marine Biology and Ecology, 87(3), 215–228. doi:10.1016/0022-0981(85)90206-0.

McAfee, S. T., & Morgan, S. G. (1996). Resource use by five sympatric parrotfishes in the San Blas Archipelago, Panama. Marine Biology, 125(3), 427–437. doi:10.1007/bf00353255.

Kittinger, J. N., Bambico, T. M., Minton, D., Miller, A., Mejia, M., Kalei, N., ... & Glazier, E. W. (2016). Restoring ecosystems, restoring community: socioeconomic and cultural dimensions of a community-based coral reef restoration project. Regional Environmental Change, 16(2), 301-313. doi:10.1007/s10113-013-0572-x.

Vardi, T., Hoot, W. C., Levy, J., Shaver, E., Winters, R. S., Banaszak, A. T., ... & Montoya‐Maya, P. H. (2021). Six priorities to advance the science and practice of coral reef restoration worldwide. Restoration Ecology, 29(8), e13498. doi:10.1111/rec.13498.

Lecchini, D., Brooker, R. M., Waqalevu, V., Gairin, E., Minier, L., Berthe, C., Besineau, R., Blay, G., Maueau, T., Sturny, V., Bambridge, T., Sang, G. T., & Bertucci, F. (2021). Effects of COVID-19 pandemic restrictions on coral reef fishes at eco-tourism sites in Bora-Bora, French Polynesia. Marine Environmental Research, 170, 105451.doi:10.1016/j.marenvres.2021.105451.

Medeiros, P. R., Grempel, R. G., Souza, A. T., Ilarri, M. I., & Sampaio, C. L. S. (2007). Effects of recreational activities on the fish assemblage structure in a northeastern Brazilian reef. Pan-American Journal of Aquatic Sciences, 2(3), 288-300.

Tripathy, S. K. (2020). Significance of traditional and advanced morphometry to fishery science. Journal of Human, Earth, and Future, 1(3), 153-166. doi:10.28991/HEF-2020-01-03-05.

Brunnschweiler, J. M., & Barnett, A. (2013). Opportunistic Visitors: Long-Term Behavioural Response of Bull Sharks to Food Provisioning in Fiji. PLoS ONE, 8(3), 58522. doi:10.1371/journal.pone.0058522.

Brunnschweiler, J. M., Abrantes, K. G., & Barnett, A. (2014). Long-term changes in species composition and relative abundances of sharks at a provisioning site. PLoS ONE, 9(1), 86682. doi:10.1371/journal.pone.0086682.

Giglio, S., Maggiori, M., & Stroebel, J. (2015). Very long-run discount rates. Quarterly Journal of Economics, 130(1), 1–53. doi:10.1093/qje/qju036.

Prinz, W. A., Toulmay, A., & Balla, T. (2020). The functional universe of membrane contact sites. Nature Reviews Molecular Cell Biology, 21(1), 7–24. doi:10.1038/s41580-019-0180-9.

Semeniuk, C. A. D., Haider, W., Cooper, A., & Rothley, K. D. (2010). A linked model of animal ecology and human behavior for the management of wildlife tourism. Ecological Modelling, 221(22), 2699–2713. doi:10.1016/j.ecolmodel.2010.07.018.

Hémery, G., & McClanahan, T. R. (2007). Effect of Recreational Fish Feeding on Reef Fish Community Composition and Behaviour. Western Indian Ocean Journal of Marine Science, 4(2), 123–134. doi:10.4314/wiojms.v4i2.28482.

Satapoomin, U., & Chansang, H. (2002). Structure of Reef Fish Communities of Phuket Island, the Andaman Sea. Phuket Marine Biological Center Research Bulletin (Thailand), 64, 25–52.

Vardi, R., Berger-Tal, O., & Roll, U. (2021). iNaturalist insights illuminate COVID-19 effects on large mammals in urban centers. Biological Conservation, 254, 108953. doi:10.1016/j.biocon.2021.108953.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-11-011


  • There are currently no refbacks.

Copyright (c) 2022 Sirirat Somchuea, Mullica Jaroensutasinee, Krisanadej Jaroensutasinee

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.