Structural Behavior of Steel Reinforced Concrete Joint Under Flexural Loads
Downloads
Doi: 10.28991/CEJ-2023-09-03-015
Full Text: PDF
Downloads
[2] Furlong, R. W. (1967). Strength of Steel-Encased Concrete Beam Columns. Journal of the Structural Division, 93(5), 113–124. doi:10.1061/jsdeag.0001761.
[3] Wakabayashi, M. (1986). Design of earthquake-resistant buildings. McGraw-Hill Companies, New York, United States.
[4] Mirmiran, A., & Shahawy, M. (1997). Behavior of Concrete Columns Confined by Fiber Composites. Journal of Structural Engineering, 123(5), 583–590. doi:10.1061/(asce)0733-9445(1997)123:5(583).
[5] Gioncu, V., & Petcu, D. (1997). Available rotation capacity of wide-flange beams and beam-columns Part 1. Theoretical approaches. Journal of Constructional Steel Research, 43(1–3), 161–217. doi:10.1016/s0143-974x(97)00044-8.
[6] Gioncu, V., & Petcu, D. (1997). Available Rotation Capacity of Wide-Flange Beams and Beam-Columns: Part 2. Experimental and Numerical Tests. Journal of Constructional Steel Research, 43(1–3), 219–244. doi:10.1016/S0143-974X(97)00045-X.
[7] Chen, C.-C., & Lin, K.-T. (2009). Behavior and strength of steel reinforced concrete beam–column joints with two-side force inputs. Journal of Constructional Steel Research, 65(3), 641–649. doi:10.1016/j.jcsr.2008.03.010.
[8] Giménez Carbó, E. (2007). Experimental and numerical study of reinforced concrete supports reinforced with metal profiles subjected to simple compression efforts. Ph.D. Thesis, Universidad Politécnica de Valencia, Valencia, Spain. (In Spanish).
[9] Figueirido, D. H. (2012). Experimental study of the buckling of rectangular steel tubular sections, filled with high-strength concrete, under axial load and diagram of variable moments. Ph.D. Thesis, Universidad Politécnica de Valencia, Valencia, Spain. (In Spanish).
[10] Chen, Z., Xu, J., & Xue, J. (2015). Hysteretic behavior of special shaped columns composed of steel and reinforced concrete (SRC). Earthquake Engineering and Engineering Vibration, 14(2), 329–345. doi:10.1007/s11803-015-0026-1.
[11] Yan, C., Yang, D., Ma, Z. J., & Jia, J. (2017). Hysteretic model of SRUHSC column and SRC beam joints considering damage effects. Materials and Structures/Materiaux et Constructions, 50(1), 50. doi:10.1617/s11527-016-0959-5.
[12] Chen, S., & Wu, P. (2017). Analytical model for predicting axial compressive behavior of steel reinforced concrete column. Journal of Constructional Steel Research, 128, 649–660. doi:10.1016/j.jcsr.2016.10.001.
[13] Bossio, A., Fabbrocino, F., Lignola, G. P., Prota, A., & Manfredi, G. (2017). Design oriented model for the assessment of T-shaped beam-column joints in reinforced concrete frames. Buildings, 7(4), 118. doi:10.3390/buildings7040118.
[14] Shoukry, M. E., Tarabia, A. M., & Abdelrahman, M. Z. (2022). Seismic retrofit of deficient exterior RC beam-column joints using steel plates and angles. Alexandria Engineering Journal, 61(4), 3147–3164. doi:10.1016/j.aej.2021.08.048.
[15] Chu, Y., Zhong, Y., Shi, B., & Gong, Y. (2022). Experimental study on seismic performance of seismic-damaged RC frames strengthened by different strengthening methods. Structures, 41, 1475–1487. doi:10.1016/j.istruc.2022.05.103.
[16] Ruiz-Pinilla, J. G., Cladera, A., Pallarés, F. J., Calderón, P. A., & Adam, J. M. (2022). Joint strengthening by external bars on RC beam-column joints. Journal of Building Engineering, 45, 103445. doi:10.1016/j.jobe.2021.103445.
[17] Shen, D., Li, M., Yang, Q., Wen, C., Liu, C., Kang, J., & Cao, X. (2022). Seismic performance of earthquake-damaged corroded reinforced concrete beam-column joints retrofitted with basalt fiber-reinforced polymer sheets. Structure and Infrastructure Engineering, 1–17. doi:10.1080/15732479.2022.2147197.
[18] Ru, Y., He, L., & Jiang, H. (2022). Investigation on a self-centering beam-column joint with tapered steel plate dampers. Journal of Constructional Steel Research, 197, 107479. doi:10.1016/j.jcsr.2022.107479.
[19] Mishra, S., Adhikari, S., & Thapa, D. (2021). Shear capacity and shear reinforcement of exterior beam-column joint of RC building. International Journal of Engineering Research & Technology, 10(3), 335-343.
[20] Jaafer, A. A., & Abdulghani, A. W. (2018). Nonlinear finite element analysis for reinforced concrete haunched beams with opening. IOP Conference Series: Materials Science and Engineering, 454, 012152. doi:10.1088/1757-899x/454/1/012152.
[21] Abdulghani, A. W., & Jaafer, A. A. (2021). Comparative Numerical Study between /Steel Fiber Reinforced Concrete and SIFCON on Beam-Column Joint Behavior. Materials Science Forum, 1021, 138–149. doi:10.4028/www.scientific.net/msf.1021.138.
[22] Legget, R. F. (1964). American society for testing and materials. Nature 203, 565–568. doi:10.1038/203565a0.
[23] ACI 318-19. (2019). Building code requirements for structural concrete (ACI 318-19) and commentary. American Concrete Institute (ACI), Michigan, United States. doi:10.14359/51716937.
[24] Hsu, L. S., & Hsu, C.-T. T. (1994). Complete stress ” strain behaviour of high-strength concrete under compression. Magazine of Concrete Research, 46(169), 301–312. doi:10.1680/macr.1994.46.169.301.
[25] Montava, I., Irles, R., Pomares, J. C., & Gonzalez, A. (2019). Experimental study of steel reinforced concrete (SRC) joints. Applied Sciences (Switzerland), 9(8), 1528. doi:10.3390/app9081528.
[26] Baumgart, F. (2000). Stiffness ” an unknown world of mechanical science? (2000). Injury, 31, 14–84. doi:10.1016/s0020-1383(00)80040-6.
[27] Marzouk, H., & Hussein, A. (1991). Experimental investigation on the behavior of high-strength concrete slabs. ACI Structural Journal, 88(6), 701–713. doi:10.14359/1261.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.