Destructive and Nondestructive Tests for Concrete Containing a Various Types of Fibers
Abstract
Doi: 10.28991/CEJ-2022-08-11-07
Full Text: PDF
Keywords
References
Pakravan, H. R., Latifi, M., & Jamshidi, M. (2017). Hybrid short fiber reinforcement system in concrete: A review. Construction and Building Materials, 142, 280–294. doi:10.1016/j.conbuildmat.2017.03.059.
Konig, G. (1998). New concepts for high performance concrete with improved ductility. Proceedings of the 12th FIP Congress on Challenges for Concrete in the next Millennium, Netherlands, 49–53.
Cui, K., Xu, L., Li, X., Hu, X., Huang, L., Deng, F., & Chi, Y. (2021). Fatigue life analysis of polypropylene fiber reinforced concrete under axial constant-amplitude cyclic compression. Journal of Cleaner Production, 319, 128610. doi:10.1016/j.jclepro.2021.128610.
Breitenbucher, R. (1996). High strength concrete C 105 with increased fiber resistance due to polypropylene fibers. 4th International Symposium on the Utilization of High Strength-High Performance Concrete, 571-577, 29-31 May, Paris, France.
Kim, J. H. J., Park, C. G., Lee, S. W., Lee, S. W., & Won, J. P. (2008). Effects of the geometry of recycled PET fiber reinforcement on shrinkage cracking of cement-based composites. Composites Part B: Engineering, 39(3), 442–450. doi:10.1016/j.compositesb.2007.05.001.
García Alberti, M., Picazo Iranzo, Á., Enfedaque Díaz, A., & Gálvez Ruiz, J. (2019). Shear behaviour of polyolefin and steel fibre-reinforced concrete. Proceedings of the 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures, June 23-26, Bayonne, France. doi:10.21012/fc10.235614.
Leone, M., Centonze, G., Colonna, D., Micelli, F., & Aiello, M. A. (2018). Fiber-reinforced concrete with low content of recycled steel fiber: Shear behaviour. Construction and Building Materials, 161, 141–155. doi:10.1016/j.conbuildmat.2017.11.101.
Ning, X., Ding, Y., Zhang, F., & Zhang, Y. (2015). Experimental study and prediction model for flexural behavior of reinforced SCC beam containing steel fibers. Construction and Building Materials, 93, 644–653. doi:10.1016/j.conbuildmat.2015.06.024.
Yoo, D. Y., & Moon, D. Y. (2018). Effect of steel fibers on the flexural behavior of RC beams with very low reinforcement ratios. Construction and Building Materials, 188, 237–254. doi:10.1016/j.conbuildmat.2018.08.099.
Yang, I. H., Joh, C., & Kim, B. S. (2011). Flexural strength of ultra-high strength concrete beams reinforced with steel fibers. Procedia Engineering, 14, 793–796. doi:10.1016/j.proeng.2011.07.100.
Hawileh, R. A., Nawaz, W., & Abdalla, J. A. (2018). Flexural behavior of reinforced concrete beams externally strengthened with Hardwire Steel-Fiber sheets. Construction and Building Materials, 172, 562–573. doi:10.1016/j.conbuildmat.2018.03.225.
Ghalehnovi, M., Karimipour, A., & de Brito, J. (2019). Influence of steel fibres on the flexural performance of reinforced concrete beams with lap-spliced bars. Construction and Building Materials, 229, 116853. doi:10.1016/j.conbuildmat.2019.116853.
Neeley, B. D., & O’Neil, E. F. (1996). Polyolefin fiber reinforced concrete. Proceedings of the 4th Materials Engineering Conference: Materials for the New Millennium, 113–122, 10-14 November, Washington, United States.
Lin, W. T., & Cheng, A. (2013). Effect of Polyolefin Fibers and Supplementary Cementitious Materials on Corrosion Behavior of Cement-Based Composites. Journal of Inorganic and Organometallic Polymers and Materials, 23(4), 888–896. doi:10.1007/s10904-013-9866-1.
Cardoso, D. C. T., Pereira, G. B. S., Silva, F. A., Silva Filho, J. J. H., & Pereira, E. V. (2019). Influence of steel fibers on the flexural behavior of RC beams with low reinforcing ratios: Analytical and experimental investigation. Composite Structures, 222, 110926. doi:10.1016/j.compstruct.2019.110926.
Lashari, M. H., Memon, N. A., & Memon, M. A. (2021). Effect of using Nylon Fibers in Self Compacting Concrete (SCC). Civil Engineering Journal, 7(8), 1426-1436. doi:10.28991/cej-2021-03091734.
Jassam, S. H., Qasim, O. A., & Maula, B. H. (2022). Effect of Fiber Type on High Strength Concrete Mechanical Properties. International Review of Civil Engineering, 13(2), 146–155. doi:10.15866/irece.v13i2.20868.
ASTM C150/150M-15. (2016). Standard Specification for Portland Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0150_C0150M-15.
ASTM C33-07. (2012). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033-07.
ASTM C494/C494M-04. (2017). Standard Specification for Chemical Admixtures for Concrete ASTM International, Pennsylvania, United States. doi:10.1520/C0494_C0494M-04.
BS EN 12390-3:2019. (2019). Methods for Determination of Compressive Strength of Concrete Cubes. British Standard Institution (BSI), London, United Kingdom.
ASTM C496/C496M-17. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0496_C0496M-17.
ASTM C78-02. (2017). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-point Loading). ASTM International, Pennsylvania, United States. doi:10.1520/C0078-02.
ASTM C 805-02. (2002). Standard Test Method for Rebound Number of Hardened Concrete. ASTM International, Pennsylvania, United States.
ASTM C597-16. (2016). Standard Test Method for Pulse Velocity through Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0597-16.
Mehta, P. K., & Monteiro, P. J. (2005). Concrete: microstructure, properties, and materials (3rd Ed.). McGraw-Hill Education, New York City, United States.
DOI: 10.28991/CEJ-2022-08-11-07
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Muthana Shaker Mahdi, Ihab Sabri Saleh, saddam Khalaf Faleh
This work is licensed under a Creative Commons Attribution 4.0 International License.