Synthesis of Volcanic Ash-based Geopolymer Mortar Designed by the Taguchi Method

Rahmi Karolina, Johannes Tarigan, M. A. Megat Johari, M. J. A. Mijarsh, Harianto Hardjasaputra

Abstract


This study focuses on the geopolymer synthesized from Mount Sinabung’s volcanic ash. The compressive strength of the geopolymer was determined by optimizing five factors using the Taguchi method’s L16 array. The five factors included: volcanic ash wt.%, Sodium silicate (Na2SiO3) wt.%, Sodium hydroxide (NaOH) concentration (mole), Na2SiO3/NaOH wt.% and water/binder (w/b) wt.%. A total of 16 mixtures were prepared per the L16 array and evaluated on five levels to obtain the optimum mixture. The main findings of this study revealed that A2B1C2D3E4 produced the highest compressive strength of 79.625 MPa after three days of curing time, while A4B2C3D1E4 produced the lowest compressive strength of 41.93 MPa. The signal-to-noise (S/N) ratio analysis from the Taguchi method shows that the factor of Na2SiO3 has a greater impact on compressive strength. The X-ray diffraction (XRD) result for the geopolymer mortar revealed the formation of aluminosilicate type (N-A-S-H) and calcium silicate (C-S-H) gels, whereas the Scanning Electron Microscopy (SEM) result exhibited numerous pores and a denser structure. These characterization results demonstrated that the polymerization of volcanic ash mortar from Sinabung successfully conserves natural resources.

 

Doi: 10.28991/CEJ-2022-08-11-016

Full Text: PDF


Keywords


Compressive Strength; Geopolymer; Taguchi Method; Volcanic Ash.

References


Alberto, F., Guerreiro, M.S. (2021). World Business Council for Sustainable Development. Encyclopaedia of Sustainable Management. Springer, Cham, Switzerland. doi:10.1007/978-3-030-02006-4_974-1.

Cadavid-Giraldo, N., Velez-Gallego, M. C., & Restrepo-Boland, A. (2020). Carbon emissions reduction and financial effects of a cap and tax system on an operating supply chain in the cement sector. Journal of Cleaner Production, 275, 122583. doi:10.1016/j.jclepro.2020.122583.

Di Filippo, J., Karpman, J., & DeShazo, J. R. (2019). The impacts of policies to reduce CO2 emissions within the concrete supply chain. Cement and Concrete Composites, 101, 67–82. doi:10.1016/j.cemconcomp.2018.08.003.

Mehta, A., Siddique, R., Singh, B. P., Aggoun, S., Łagód, G., & Barnat-Hunek, D. (2017). Influence of various parameters on strength and absorption properties of fly ash based geopolymer concrete designed by Taguchi method. Construction and Building Materials, 150, 817–824. doi:10.1016/j.conbuildmat.2017.06.066.

Topçu, I. B., Toprak, M. U., & Uygunoǧlu, T. (2014). Durability and microstructure characteristics of alkali activated coal bottom ash geopolymer cement. Journal of Cleaner Production, 81, 211–217. doi:10.1016/j.jclepro.2014.06.037.

Yang, G., Zhao, J., & Wang, Y. (2022). Durability properties of sustainable alkali-activated cementitious materials as marine engineering material: A review. Materials Today Sustainability, 17, 100099. doi:10.1016/j.mtsust.2021.100099.

Davidovits, J. (2013). Geopolymer cement. A review. Technical papers, 21, Geopolymer Institute, Saint-Quentin, France.

Glukhovsky, V. D. (1959). Soil silicates (Gruntosilikaty). Budivelnik Publication, Kyiv, Ukraine.

Juenger, M. C. G., Winnefeld, F., Provis, J. L., & Ideker, J. H. (2011). Advances in alternative cementitious binders. Cement and Concrete Research, 41(12), 1232–1243. doi:10.1016/j.cemconres.2010.11.012.

Scrivener, K. L., John, V. M., & Gartner, E. M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114, 2–26. doi:10.1016/j.cemconres.2018.03.015.

Ganeshan, M., & Venkataraman, S. (2022). Interface shear strength evaluation of self-compacting geopolymer concrete using push-off test. Journal of King Saud University - Engineering Sciences, 34(2), 98–107. doi:10.1016/j.jksues.2020.08.005.

Onoue, K., Iwamoto, T., & Sagawa, Y. (2019). Optimization of the design parameters of fly ash-based geopolymer using the dynamic approach of the Taguchi method. Construction and Building Materials, 219, 1–10. doi:10.1016/j.conbuildmat.2019.05.177.

Lin, R. S., Han, Y., & Wang, X. Y. (2021). Experimental study on optimum proportioning of Portland cements, limestone, metakaolin, and fly ash for obtaining quaternary cementitious composites. Case Studies in Construction Materials, 15. doi:10.1016/j.cscm.2021.e00691.

Chindaprasirt, P., Jitsangiam, P., Chalee, W., & Rattanasak, U. (2021). Case study of the application of pervious fly ash geopolymer concrete for neutralization of acidic wastewater. Case Studies in Construction Materials, 15, 770. doi:10.1016/j.cscm.2021.e00770.

Kumar, G., & Mishra, S. S. (2021). Effect of GGBFS on workability and strength of alkali-activated geopolymer concrete. Civil Engineering Journal, 7(6), 1036–1049. doi:10.28991/cej-2021-03091708.

Aziz, A., Benzaouak, A., Bellil, A., Alomayri, T., Ni el Hassani, I. E. E., Achab, M., El Azhari, H., Et-Tayea, Y., & Shaikh, F. U. A. (2021). Effect of acidic volcanic perlite rock on physio-mechanical properties and microstructure of natural pozzolan based geopolymers. Case Studies in Construction Materials, 15, 712. doi:10.1016/j.cscm.2021.e00712.

Robayo-Salazar, R. A., & Mejía de Gutiérrez, R. (2018). Natural volcanic pozzolans as an available raw material for alkali-activated materials in the foreseeable future: A review. Construction and Building Materials, 189, 109–118. doi:10.1016/j.conbuildmat.2018.08.174.

Tchakoute Kouamo, H., Elimbi, A., Mbey, J. A., Ngally Sabouang, C. J., & Njopwouo, D. (2012). The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products: A comparative study. Construction and Building Materials, 35, 960–969. doi:10.1016/j.conbuildmat.2012.04.023.

de Jong, B. H. W. S., & Brown, G. E. (1980). Polymerization of silicate and aluminate tetrahedra in glasses, melts, and aqueous solutions-I. Electronic structure of H6Si2O7, H6AlSiO71-, and H6Al2O72-. Geochimica et Cosmochimica Acta, 44(3), 491–511. doi:10.1016/0016-7037(80)90046-0.

Duxson, P., Provis, J. L., Lukey, G. C., Mallicoat, S. W., Kriven, W. M., & Van Deventer, J. S. J. (2005). Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269(1–3), 47–58. doi:10.1016/j.colsurfa.2005.06.060.

He, J., Zhang, J., Yu, Y., & Zhang, G. (2012). The strength and microstructure of two geopolymers derived from metakaolin and red mud-fly ash admixture: A comparative study. Construction and Building Materials, 30, 80–91. doi:10.1016/j.conbuildmat.2011.12.011.

Mijarsh, M. J. A., Megat Johari, M. A., & Ahmad, Z. A. (2014). Synthesis of geopolymer from large amounts of treated palm oil fuel ash: Application of the Taguchi method in investigating the main parameters affecting compressive strength. Construction and Building Materials, 52, 473–481. doi:10.1016/j.conbuildmat.2013.11.039.

Hadi, M. N. S., Farhan, N. A., & Sheikh, M. N. (2017). Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method. Construction and Building Materials, 140, 424–431. doi:10.1016/j.conbuildmat.2017.02.131.

He, J., Jie, Y., Zhang, J., Yu, Y., & Zhang, G. (2013). Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cement and Concrete Composites, 37(1), 108–118. doi:10.1016/j.cemconcomp.2012.11.010.

Nazari, A., Riahi, S., & Bagheri, A. (2012). Designing water resistant lightweight geopolymers produced from waste materials. Materials and Design, 35, 296–302. doi:10.1016/j.matdes.2011.09.016.

Riahi, S., Nazari, A., Zaarei, D., Khalaj, G., Bohlooli, H., & Kaykha, M. M. (2012). Compressive strength of ash-based geopolymers at early ages designed by Taguchi method. Materials and Design, 37, 443–449. doi:10.1016/j.matdes.2012.01.030.

Calderón, N., Vargas, M., Almirón, J., Bautista, A., Velasco, F., & Tupayachy-Quispe, D. (2021). Influence of the Activating Solution and Aggregates in the Physical and Mechanical Properties of Volcanic Ash Based Geopolymer Mortars. IOP Conference Series: Materials Science and Engineering, 1054(1), 012003. doi:10.1088/1757-899x/1054/1/012003.

ASTM C109/C109M-20. (2020). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, Pennsylvania, United States. doi:10.1520/C0109_C0109M-20.

Olivia, M., & Nikraz, H. (2012). Properties of fly ash geopolymer concrete designed by Taguchi method. Materials & Design (1980-2015), 36, 191–198. doi:10.1016/j.matdes.2011.10.036.

Mehta, A., Siddique, R., Ozbakkaloglu, T., Uddin Ahmed Shaikh, F., & Belarbi, R. (2020). Fly ash and ground granulated blast furnace slag-based alkali-activated concrete: Mechanical, transport and microstructural properties. Construction and Building Materials, 257, 119548. doi:10.1016/j.conbuildmat.2020.119548.

Shoji, S., Kodayashi, S., Yamada, I., & Masui, J. (1975). Chemical and mineralogical studies on volcanic ashes I. Chemical composition of volcanic ashes and their classification. Soil Science and Plant Nutrition, 21(4), 311–318. doi:10.1080/00380768.1975.10432646.

Ilham, D. J., Anggarini, U., Juniarti, J., & Fiantis, D. (2021). Utilization of volcanic ashes for geopolymer based on alkaline activator and solid-liquid ratio. IOP Conference Series: Earth and Environmental Science, 708(1), 012058. doi:10.1088/1755-1315/708/1/012058.

Tashima, M. M., Soriano, L., Borrachero, M. V., Monzó, J., & Payá, J. (2013). Effect of curing time on microstructure and mechanical strength development of alkali activated binders based on vitreous calcium aluminosilicate (VCAS). Bulletin of Materials Science, 36(2), 245–249. doi:10.1007/s12034-013-0466-z.

Pacheco-Torgal, F., Moura, D., Ding, Y., & Jalali, S. (2011). Composition, strength and workability of alkali-activated metakaolin based mortars. Construction and Building Materials, 25(9), 3732–3745. doi:10.1016/j.conbuildmat.2011.04.017.

Barbosa, V. F. F., MacKenzie, K. J. D., & Thaumaturgo, C. (2000). Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers. International Journal of Inorganic Materials, 2(4), 309–317. doi:10.1016/S1466-6049(00)00041-6.

Ghadir, P., & Razeghi, H. R. (2022). Effects of sodium chloride on the mechanical strength of alkali activated volcanic ash and slag pastes under room and elevated temperatures. Construction and Building Materials, 344, 128113. doi:10.1016/j.conbuildmat.2022.128113.

Bellum, R. R., Muniraj, K., & Madduru, S. R. C. (2020). Influence of slag on mechanical and durability properties of fly ash-based geopolymer concrete. Journal of the Korean Ceramic Society, 57(5), 530–545. https://doi.org/10.1007/s43207-020-00056-7.

Latif, D. O. (2016). Chemical Characteristics of Volcanic Ash in Indonesia for Soil Stabilization: Morphology and Mineral Content. International Journal of Geomate. doi:10.21660/2016.26.151120.

Sinuhaji, P., Sembiring, T., Magfirah, A., Piliang, A. F., & Nababan, S. M. (2018). Analysis of Composition; Topography of Volcanic Materials Erupted from Mount Sinabung, Karo Regency, Indonesia. Journal of Physics: Conference Series, 1116(3), 32035. doi:10.1088/1742-6596/1116/3/032035.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-11-016

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Rahmi Karolina, Johannes Tarigan, Megat Azmi Megat Johari, Mustafa Juma A Mijarsh, Harianto Hardjasaputra

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message