Synthesis of Volcanic Ash-based Geopolymer Mortar Designed by the Taguchi Method
Abstract
Doi: 10.28991/CEJ-2022-08-11-016
Full Text: PDF
Keywords
References
Alberto, F., Guerreiro, M.S. (2021). World Business Council for Sustainable Development. Encyclopaedia of Sustainable Management. Springer, Cham, Switzerland. doi:10.1007/978-3-030-02006-4_974-1.
Cadavid-Giraldo, N., Velez-Gallego, M. C., & Restrepo-Boland, A. (2020). Carbon emissions reduction and financial effects of a cap and tax system on an operating supply chain in the cement sector. Journal of Cleaner Production, 275, 122583. doi:10.1016/j.jclepro.2020.122583.
Di Filippo, J., Karpman, J., & DeShazo, J. R. (2019). The impacts of policies to reduce CO2 emissions within the concrete supply chain. Cement and Concrete Composites, 101, 67–82. doi:10.1016/j.cemconcomp.2018.08.003.
Mehta, A., Siddique, R., Singh, B. P., Aggoun, S., Łagód, G., & Barnat-Hunek, D. (2017). Influence of various parameters on strength and absorption properties of fly ash based geopolymer concrete designed by Taguchi method. Construction and Building Materials, 150, 817–824. doi:10.1016/j.conbuildmat.2017.06.066.
Topçu, I. B., Toprak, M. U., & Uygunoǧlu, T. (2014). Durability and microstructure characteristics of alkali activated coal bottom ash geopolymer cement. Journal of Cleaner Production, 81, 211–217. doi:10.1016/j.jclepro.2014.06.037.
Yang, G., Zhao, J., & Wang, Y. (2022). Durability properties of sustainable alkali-activated cementitious materials as marine engineering material: A review. Materials Today Sustainability, 17, 100099. doi:10.1016/j.mtsust.2021.100099.
Davidovits, J. (2013). Geopolymer cement. A review. Technical papers, 21, Geopolymer Institute, Saint-Quentin, France.
Glukhovsky, V. D. (1959). Soil silicates (Gruntosilikaty). Budivelnik Publication, Kyiv, Ukraine.
Juenger, M. C. G., Winnefeld, F., Provis, J. L., & Ideker, J. H. (2011). Advances in alternative cementitious binders. Cement and Concrete Research, 41(12), 1232–1243. doi:10.1016/j.cemconres.2010.11.012.
Scrivener, K. L., John, V. M., & Gartner, E. M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114, 2–26. doi:10.1016/j.cemconres.2018.03.015.
Ganeshan, M., & Venkataraman, S. (2022). Interface shear strength evaluation of self-compacting geopolymer concrete using push-off test. Journal of King Saud University - Engineering Sciences, 34(2), 98–107. doi:10.1016/j.jksues.2020.08.005.
Onoue, K., Iwamoto, T., & Sagawa, Y. (2019). Optimization of the design parameters of fly ash-based geopolymer using the dynamic approach of the Taguchi method. Construction and Building Materials, 219, 1–10. doi:10.1016/j.conbuildmat.2019.05.177.
Lin, R. S., Han, Y., & Wang, X. Y. (2021). Experimental study on optimum proportioning of Portland cements, limestone, metakaolin, and fly ash for obtaining quaternary cementitious composites. Case Studies in Construction Materials, 15. doi:10.1016/j.cscm.2021.e00691.
Chindaprasirt, P., Jitsangiam, P., Chalee, W., & Rattanasak, U. (2021). Case study of the application of pervious fly ash geopolymer concrete for neutralization of acidic wastewater. Case Studies in Construction Materials, 15, 770. doi:10.1016/j.cscm.2021.e00770.
Kumar, G., & Mishra, S. S. (2021). Effect of GGBFS on workability and strength of alkali-activated geopolymer concrete. Civil Engineering Journal, 7(6), 1036–1049. doi:10.28991/cej-2021-03091708.
Aziz, A., Benzaouak, A., Bellil, A., Alomayri, T., Ni el Hassani, I. E. E., Achab, M., El Azhari, H., Et-Tayea, Y., & Shaikh, F. U. A. (2021). Effect of acidic volcanic perlite rock on physio-mechanical properties and microstructure of natural pozzolan based geopolymers. Case Studies in Construction Materials, 15, 712. doi:10.1016/j.cscm.2021.e00712.
Robayo-Salazar, R. A., & Mejía de Gutiérrez, R. (2018). Natural volcanic pozzolans as an available raw material for alkali-activated materials in the foreseeable future: A review. Construction and Building Materials, 189, 109–118. doi:10.1016/j.conbuildmat.2018.08.174.
Tchakoute Kouamo, H., Elimbi, A., Mbey, J. A., Ngally Sabouang, C. J., & Njopwouo, D. (2012). The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products: A comparative study. Construction and Building Materials, 35, 960–969. doi:10.1016/j.conbuildmat.2012.04.023.
de Jong, B. H. W. S., & Brown, G. E. (1980). Polymerization of silicate and aluminate tetrahedra in glasses, melts, and aqueous solutions-I. Electronic structure of H6Si2O7, H6AlSiO71-, and H6Al2O72-. Geochimica et Cosmochimica Acta, 44(3), 491–511. doi:10.1016/0016-7037(80)90046-0.
Duxson, P., Provis, J. L., Lukey, G. C., Mallicoat, S. W., Kriven, W. M., & Van Deventer, J. S. J. (2005). Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269(1–3), 47–58. doi:10.1016/j.colsurfa.2005.06.060.
He, J., Zhang, J., Yu, Y., & Zhang, G. (2012). The strength and microstructure of two geopolymers derived from metakaolin and red mud-fly ash admixture: A comparative study. Construction and Building Materials, 30, 80–91. doi:10.1016/j.conbuildmat.2011.12.011.
Mijarsh, M. J. A., Megat Johari, M. A., & Ahmad, Z. A. (2014). Synthesis of geopolymer from large amounts of treated palm oil fuel ash: Application of the Taguchi method in investigating the main parameters affecting compressive strength. Construction and Building Materials, 52, 473–481. doi:10.1016/j.conbuildmat.2013.11.039.
Hadi, M. N. S., Farhan, N. A., & Sheikh, M. N. (2017). Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method. Construction and Building Materials, 140, 424–431. doi:10.1016/j.conbuildmat.2017.02.131.
He, J., Jie, Y., Zhang, J., Yu, Y., & Zhang, G. (2013). Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cement and Concrete Composites, 37(1), 108–118. doi:10.1016/j.cemconcomp.2012.11.010.
Nazari, A., Riahi, S., & Bagheri, A. (2012). Designing water resistant lightweight geopolymers produced from waste materials. Materials and Design, 35, 296–302. doi:10.1016/j.matdes.2011.09.016.
Riahi, S., Nazari, A., Zaarei, D., Khalaj, G., Bohlooli, H., & Kaykha, M. M. (2012). Compressive strength of ash-based geopolymers at early ages designed by Taguchi method. Materials and Design, 37, 443–449. doi:10.1016/j.matdes.2012.01.030.
Calderón, N., Vargas, M., Almirón, J., Bautista, A., Velasco, F., & Tupayachy-Quispe, D. (2021). Influence of the Activating Solution and Aggregates in the Physical and Mechanical Properties of Volcanic Ash Based Geopolymer Mortars. IOP Conference Series: Materials Science and Engineering, 1054(1), 012003. doi:10.1088/1757-899x/1054/1/012003.
ASTM C109/C109M-20. (2020). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, Pennsylvania, United States. doi:10.1520/C0109_C0109M-20.
Olivia, M., & Nikraz, H. (2012). Properties of fly ash geopolymer concrete designed by Taguchi method. Materials & Design (1980-2015), 36, 191–198. doi:10.1016/j.matdes.2011.10.036.
Mehta, A., Siddique, R., Ozbakkaloglu, T., Uddin Ahmed Shaikh, F., & Belarbi, R. (2020). Fly ash and ground granulated blast furnace slag-based alkali-activated concrete: Mechanical, transport and microstructural properties. Construction and Building Materials, 257, 119548. doi:10.1016/j.conbuildmat.2020.119548.
Shoji, S., Kodayashi, S., Yamada, I., & Masui, J. (1975). Chemical and mineralogical studies on volcanic ashes I. Chemical composition of volcanic ashes and their classification. Soil Science and Plant Nutrition, 21(4), 311–318. doi:10.1080/00380768.1975.10432646.
Ilham, D. J., Anggarini, U., Juniarti, J., & Fiantis, D. (2021). Utilization of volcanic ashes for geopolymer based on alkaline activator and solid-liquid ratio. IOP Conference Series: Earth and Environmental Science, 708(1), 012058. doi:10.1088/1755-1315/708/1/012058.
Tashima, M. M., Soriano, L., Borrachero, M. V., Monzó, J., & Payá, J. (2013). Effect of curing time on microstructure and mechanical strength development of alkali activated binders based on vitreous calcium aluminosilicate (VCAS). Bulletin of Materials Science, 36(2), 245–249. doi:10.1007/s12034-013-0466-z.
Pacheco-Torgal, F., Moura, D., Ding, Y., & Jalali, S. (2011). Composition, strength and workability of alkali-activated metakaolin based mortars. Construction and Building Materials, 25(9), 3732–3745. doi:10.1016/j.conbuildmat.2011.04.017.
Barbosa, V. F. F., MacKenzie, K. J. D., & Thaumaturgo, C. (2000). Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers. International Journal of Inorganic Materials, 2(4), 309–317. doi:10.1016/S1466-6049(00)00041-6.
Ghadir, P., & Razeghi, H. R. (2022). Effects of sodium chloride on the mechanical strength of alkali activated volcanic ash and slag pastes under room and elevated temperatures. Construction and Building Materials, 344, 128113. doi:10.1016/j.conbuildmat.2022.128113.
Bellum, R. R., Muniraj, K., & Madduru, S. R. C. (2020). Influence of slag on mechanical and durability properties of fly ash-based geopolymer concrete. Journal of the Korean Ceramic Society, 57(5), 530–545. https://doi.org/10.1007/s43207-020-00056-7.
Latif, D. O. (2016). Chemical Characteristics of Volcanic Ash in Indonesia for Soil Stabilization: Morphology and Mineral Content. International Journal of Geomate. doi:10.21660/2016.26.151120.
Sinuhaji, P., Sembiring, T., Magfirah, A., Piliang, A. F., & Nababan, S. M. (2018). Analysis of Composition; Topography of Volcanic Materials Erupted from Mount Sinabung, Karo Regency, Indonesia. Journal of Physics: Conference Series, 1116(3), 32035. doi:10.1088/1742-6596/1116/3/032035.
DOI: 10.28991/CEJ-2022-08-11-016
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Rahmi Karolina, Johannes Tarigan, Megat Azmi Megat Johari, Mustafa Juma A Mijarsh, Harianto Hardjasaputra
This work is licensed under a Creative Commons Attribution 4.0 International License.