Performance Flexural of RC Beams Without Concrete at Tension Cross-section

Astiah Amir, Aulia Rahman, Lissa Opirina, Fadli Idris


This study aims to analyze the flexural capacity of RC without concrete in a tension cross-section using an experimental method. The number of specimens is three pieces, namely a spiral reinforced concrete beam (SBC) and a vertical reinforced concrete beam (CBN); both of these blocks are without concrete in the cross-section of the reinforcement and 60D tensile steel reinforcement in the support area, where D is the primary diameter, and a conventional concrete beam as the control beam (CB). The beam size is 3100×150×200 mm. The beams are supported by simple supports with a span of 3000 mm. The concrete in the structural beam elements, which work optimally to withstand the load, is the outermost fibre part of the side, while the concrete on the tension side does not have a direct role in determining the magnitude of the resisting moment. Therefore, the quality of the concrete in the concrete beam section must be optimized, while the concrete in the tension section must be minimized. Eliminating concrete in tension areas reduces the construction's self-weight and use of concrete-making materials. The main variables in this research are bending behaviour and crack pattern. The beam specimens were tested with two-point loading monotonically. By observing the crack pattern and failure mode, the results showed an increase in the capacity load of SBC by 21.58% CBN but a decrease of 27.57% compared to the CB control beam. Flexural cracks and beam failures resembled under-reinforcing. The flexural capacity was analyzed based on static analysis and then validated by calculating the ratio between the theoretical nominal moment and the experimental moment. This finding shows that changing the conventional shear reinforcement model to spiral can increase the flexural of the beam without concrete in the tension cross-section.


Doi: 10.28991/CEJ-2022-08-11-014

Full Text: PDF


Flexural Capacity; Spiral Reinforced; Tensile Cross-Section; Tensile Reinforcement.


Gerges, N. N., Issa, C. A., Sleiman, E., Aintrazi, S., Saadeddine, J., Abboud, R., & Antoun, M. (2022). Eco-Friendly Optimum Structural Concrete Mix Design. Sustainability (Switzerland), 14(14). doi:10.3390/su14148660.

Prabha, S. L., Surendar, M., & Neelamegam, M. (2019). Experimental investigation of eco-friendly mortar using industrial wastes. Journal of Green Engineering, 9(4), 626–637.

Elsayed, M., Tayeh, B. A., Abu Aisheh, Y. I., El-Nasser, N. A., & Elmaaty, M. A. (2022). Shear strength of eco-friendly self-compacting concrete beams containing ground granulated blast furnace slag and fly ash as cement replacement. Case Studies in Construction Materials, 17, e01354. doi:10.1016/j.cscm.2022.e01354.

Balaji, G., & Vetturayasudharsanan, R. (2020). Experimental investigation on flexural behaviour of RC hollow beams. Materials Today: Proceedings, 21, 351–356. doi:10.1016/j.matpr.2019.05.461.

Ismael, M. A., & Hameed, Y. M. (2022). Structural behavior of hollow-core reinforced self-compacting concrete beams. SN Applied Sciences, 4(5). doi:10.1007/s42452-022-05036-6.

Hassan, N. Z., Ismael, H. M., & Salman, A. M. (2018). Study Behavior of Hollow Reinforced Concrete Beams. International Journal of Current Engineering and Technology, 8(6), 1640–1651.

Kanna, M.D., & Arun, M. (2021). Effects of Longitudinal and Transverse Direction Opening in Reinforced Concrete Beam: The State of Review. IOP Conference Series: Materials Science and Engineering, 1059(1). doi:10.1088/1757-899X/1059/1/012049.

Manikandan, S., Dharmar, S., & Robertravi, S. (2015). Experimental study on flexural behaviour of reinforced concrete hollow core sandwich beams. International Journal of Advance Research in Science and Engineering, 4(01), 937-946.

Patel, R. R. (2018). Flexural Behavior and Strength of Doubly-Reinforced Concrete Beams with Hollow Plastic Spheres. Old Dominion University, Norfolk, United States.

Ataria, R. B., & Wang, Y. C. (2019). Bending and shear behaviour of two layer beams with one layer of rubber recycled aggregate concrete in tension. Structures, 20, 214–225. doi:10.1016/j.istruc.2019.03.014.

Syahrul, S., Tjaronge, M. W., Djamaluddin, R., & Amiruddin, A. A. (2021). Flexural Behavior of Normal and Lightweight Concrete Composite Beams. Civil Engineering Journal, 7(3), 549–559. doi:10.28991/cej-2021-03091673.

Fakhruddin, Irmawaty, R., & Djamaluddin, R. (2022). Flexural behavior of monolith and hybrid concrete beams produced through the partial replacement of coarse aggregate with PET waste. Structures, 43, 1134–1144. doi:10.1016/j.istruc.2022.07.015.

Hussein, L. F., Khattab, M. M., & Farman, M. S. (2021). Experimental and finite element studies on the behavior of hybrid reinforced concrete beams. Case Studies in Construction Materials, 15, e00607. doi:10.1016/j.cscm.2021.e00607.

Djamaluddin, R. (2013). Flexural behaviour of external reinforced concrete beams. Procedia Engineering, 54, 252–260. doi:10.1016/j.proeng.2013.03.023.

Amir, A., Djamaluddin, R., Irmawati, R., & Amiruddin, A. A. (2020). Effect steel reinforcement ratio on the behavior of RC beam without concrete at tension zone using truss-system reinforcement. IOP Conference Series: Earth and Environmental Science, 419(1). doi:10.1088/1755-1315/419/1/012050.

Vatulia, G., Komagorova, S., & Pavliuchenkov, M. (2018). Optimization of the truss beam. Verification of the calculation results. MATEC Web of Conferences, 230, 02037. doi:10.1051/matecconf/201823002037.

Afefy, H., Taher, S., Fawzy, O., & Salem, S. (2022). Numerical Simulation of RC Beams Reinforced with Internal Steel Trusses. International Journal of Advances in Structural and Geotechnical Engineering, 03(02), 38–51. doi:10.21608/asge.2022.152826.1023.

Tarawneh, A., Almasabha, G., Alawadi, R., & Tarawneh, M. (2021). Innovative and reliable model for shear strength of steel fibers reinforced concrete beams. Structures, 32, 1015–1025. doi:10.1016/j.istruc.2021.03.081.

Elansary, A. A., Elnazlawy, Y. Y., & Abdalla, H. A. (2022). Shear behaviour of concrete wide beams with spiral lateral reinforcement. Australian Journal of Civil Engineering, 20(1), 174–194. doi:10.1080/14488353.2021.1942405.

Saha, P., & Meesaraganda, L. V. P. (2019). Experimental investigation of reinforced SCC beam-column joint with rectangular spiral reinforcement under cyclic loading. Construction and Building Materials, 201, 171–185. doi:10.1016/j.conbuildmat.2018.12.192.

Ibrahim, A., Askar, H. S., & El-Zoughiby, M. E. (2022). Torsional behavior of solid and hollow concrete beams reinforced with inclined spirals. Journal of King Saud University - Engineering Sciences, 34(5), 309–321. doi:10.1016/j.jksues.2020.10.008.

Askandar, N. H., & Mahmood, A. D. (2020). Torsional Strengthening of RC Beams with Continuous Spiral Near-Surface Mounted Steel Wire Rope. International Journal of Concrete Structures and Materials, 14(1). doi:10.1186/s40069-019-0386-4.

Ibrahim, A., Askar, H. S., & El-Zoughiby, M. E. (2022). Experimental and Numerical Nonlinear Analysis of Hollow RC Beams Reinforced with Rectangular Spiral Stirrups under Torsion. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 46(6), 4019–4029. doi:10.1007/s40996-022-00852-7.

Al-Faqra, E., Murad, Y., Abdel Jaber, M., & Shatarat, N. (2021). Torsional behaviour of high strength concrete beams with spiral reinforcement. Australian Journal of Structural Engineering, 22(4), 266–276. doi:10.1080/13287982.2021.1962489.

Shatarat, N., Mahmoud, H. M., & Katkhuda, H. (2018). Shear capacity investigation of self-compacting concrete beams with rectangular spiral reinforcement. Construction and Building Materials, 189, 640–648. doi:10.1016/j.conbuildmat.2018.09.046.

Azimi, M., Campos, U. A., Matthews, J. C., Lu, H., Tehrani, F. M., Sun, S., & Alam, S. (2020). Experimental and Numerical Study of Cyclic Performance of Reinforced Concrete Exterior Connections with Rectangular-Spiral Reinforcement. Journal of Structural Engineering, 146(3), 4019219. doi:10.1061/(asce)st.1943-541x.0002506.

ACI 211.2-98. (2004). Standard Practice for Selecting proportionds for Structural Lightweight Concrete (ACI 211.2-98). American Concrete Institute (ACI), Farmington Hills, United States.

ASTM C33-03. (2010). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033-03.

ASTM C39/C39M-03. (2017). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039M-03.

Narule, G. N., & Sonawane, K. K. (2022). Flexural and shear cracking performance of strengthened RC rectangular beam with variable pattern of the BFRP strips. Innovative Infrastructure Solutions, 7(2), 1-16. doi:10.1007/s41062-022-00785-0.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-11-014


  • There are currently no refbacks.

Copyright (c) 2022 Astiah - Amir, Aulia - Rahman, Lissa - Opirina, Fadli - Idris

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.