Optimal Compressive Strength of RHA Ultra-High-Performance Lightweight Concrete (UHPLC) and Its Environmental Performance Using Life Cycle Assessment

Kennedy C. Onyelowe, Ahmed M. Ebid, Hisham A. Mahdi, Ariel Riofrio, Danial Rezazadeh Eidgahee, Haci Baykara, Atefeh Soleymani, Denise-Penelope N. Kontoni, Jamshid Shakeri, Hashem Jahangir

Abstract


Frequent laboratory needs during the production of concrete for infrastructure development purposes are a factor of serious concern for sustainable development. In order to overcome this trend, an intelligent forecast of the concrete properties based on multiple data points collected from various concrete mixes produced and cured under different conditions is adopted. It is equally important to consider the impact of the concrete components in this attempt to take care of the environmental risks involved in this production. In this work, 192 mixes of an ultra-high-performance lightweight concrete (UHPLC) were collected from literature representing different mixes cured under different periods and laboratory conditions. These mix proportions constitute measured variables, which are curing age (A), cement content (C), fine aggregate (FAg), plasticizer (PL), and rice husk ash (RHA). The studied concrete property was the unconfined compressive strength (Fc). This exercise was necessary to reduce multiple dependence on laboratory examinations by proposing concrete strength equations. First, the life cycle assessment evaluation was conducted on the rice husk ash-based UHPLC, and the results from the 192 mixes show that the C-783 mix (87 kg/m3 RHA) has the highest score on the environmental performance evaluation, while C-300 (75 kg/m3 RHA) with life cycle indices of 289.85 kg CO2eq. Global warming potential (GWP), 0.66 kg SO2eq. Terrestrial acidification and 5.77 m3 water consumption was selected to be the optimal choice due to its good profile in the LCA and the Fc associated with the mix. Second, intelligent predictions were conducted by using six algorithms (ANN-BP), (ANN-GRG), (ANN-GA), (GP), (EPR), and (GMDH-Combi). The results show that (ANN-BP) with performance indices of R; 0.989, R2; 0.979, mean square error (MSE); 2252.55, root mean squared error (RMSE); 42.46 MPa and mean absolute percentage error (MAPE); 4.95% outclassed the other five techniques and is selected as the decisive model. However, it also compared well and outclassed previous models, which had used gene expression programming (GEP) and random forest regression (RFR) and achieved R2of 0.96 and 0.91, respectively.

 

Doi: 10.28991/CEJ-2022-08-11-03

Full Text: PDF


Keywords


Lightweight Concrete; Sustainable Construction; Environmental Impact; Life Cycle Impact Assessment; Green Concrete.

References


Ingrao, C., Scrucca, F., Tricase, C., & Asdrubali, F. (2016). A comparative Life Cycle Assessment of external wall-compositions for cleaner construction solutions in buildings. Journal of Cleaner Production, 124, 283–298. doi:10.1016/j.jclepro.2016.02.112.

Soleimani, T., Hayek, M., Junqua, G., Salgues, M., & Souche, J. C. (2022). Environmental, economic and experimental assessment of the valorization of dredged sediment through sand substitution in concrete. Science of the Total Environment, 159980. doi:10.1016/j.scitotenv.2022.159980.

Colangelo, F., Forcina, A., Farina, I., & Petrillo, A. (2018). Life Cycle Assessment (LCA) of different kinds of concrete containing waste for sustainable construction. Buildings, 8(5), 70. doi:10.3390/buildings8050070.

Soleymani, A., & Esfahani, mohammad R. (2019). Effect of concrete strength and thickness of flat slab on preventing of progressive collapse caused by elimination of an internal column. Journal of Structural and Construction Engineering, 6(1), 24–40. doi:10.22065/jsce.2017.98444.1335.

Rodríguez, G., Medina, C., Alegre, F. J., Asensio, E., & De Sánchez Rojas, M. I. (2015). Assessment of Construction and Demolition Waste plant management in Spain: In pursuit of sustainability and eco-efficiency. Journal of Cleaner Production, 90, 16–24. doi:10.1016/j.jclepro.2014.11.067.

Caldas, L., Martins, M., Lima, D., & Sposto, R. (2016). Literature review of life cycle assessment applied to green concretes. Proceedings of the 6th Amazon & Pacific Green Materials Congress and Sustainable Construction Materials Lat-Rilem Conference, 27-29 April, 2016, Cali, Colombia.

Surahman, U., Kubota, T., & Higashi, O. (2015). Life cycle assessment of energy and CO2 emissions for residential buildings in Jakarta and Bandung, Indonesia. Buildings, 5(4), 1131–1155. doi:10.3390/buildings5041131.

Peng, K., Wu, L., Zandi, Y., Agdas, A. S., Majdi, A., Denic, N., Zakić, A., Khalek Ebid, A. A., Khadimallah, M. A., & Ali, H. E. (2022). Application of Polyacrylic Hydrogel in Durability and Reduction of Environmental Impacts of Concrete through ANN. Gels, 8(8), 468. doi:10.3390/gels8080468.

Alyousef, R., Mohammadhosseini, H., Ebid, A. A. K., Alabduljabbar, H., Ngian, S. P., & Mohamed, A. M. (2022). Durability Enhancement of Sustainable Concrete Composites Comprising Waste Metalized Film Food Packaging Fibers and Palm Oil Fuel Ash. Sustainability (Switzerland), 14(9), 5253. doi:10.3390/su14095253.

Min, J., Zandi, Y., Agdas, A. S., Majdi, A., Ali, H. E., Jan, A., Salameh, A. A., & Ebid, A. A. K. (2022). The Numerical Analysis of Replenishment of Hydrogel Void Space Concrete Using Hydrogels Containing Nano-Silica Particles through ELM-ANFIS. Gels, 8(5), 8,299. doi:10.3390/gels8050299.

Liu, Q., Peng, K., Zandi, Y., Agdas, A. S., Al-Tamimi, H. M., Assilzadeh, H., Khalek Ebid, A. A., Khadimallah, M. A., & Ali, H. E. (2022). Mechanical Characteristics and Self-Healing Soil-Cementitious Hydrogel Materials in Mine Backfill Using Hybridized ANFIS-SVM. Gels, 8(7), 455. doi:10.3390/gels8070455.

Reddy, S. V. B., & Srinivasa Rao, P. (2020). Experimental studies on mechanical properties and impact characteristics of ternary concrete with steel fiber. Materials Today: Proceedings, 27, 788–797. doi:10.1016/j.matpr.2019.12.344.

Iswarya, G., & Beulah, M. (2021). Use of zeolite and industrial waste materials in high strength concrete - A review. Materials Today: Proceedings, 46, 116–123. doi:10.1016/j.matpr.2020.06.329.

Shen, L., Li, Q., Ge, W., & Xu, S. (2020). The mechanical property and frost resistance of roller compacted concrete by mixing silica fume and limestone powder: Experimental study. Construction and Building Materials, 239, 117882. doi:10.1016/j.conbuildmat.2019.117882.

Habeeb, G. A., Mahmud, H. B., & Hamid, N. B. A. A. (2010). Assessment of deterioration in RHA-concrete due to magnesium sulphate attack. International Journal of Minerals, Metallurgy and Materials, 17(6), 691–696. doi:10.1007/s12613-010-0375-8.

Manjunatha, M., Vijaya Bhaskar Raju, K., Sivapullaiah, P.V. (2021). Effect of PVC Dust on the Performance of Cement Concrete—A Sustainable Approach. Recent Developments in Sustainable Infrastructure. Lecture Notes in Civil Engineering, 75. Springer, Singapore. doi:10.1007/978-981-15-4577-1_52.

Mohan, A., & Mini, K. M. (2018). Strength Studies of SCC Incorporating Silica Fume and Ultra-Fine GGBS. Materials Today: Proceedings, 5(11), 23752–23758. doi:10.1016/j.matpr.2018.10.166.

Jincheng, X., Weichang, H., Xinli, K., & Tianmin, W. (2001). Research and development of the object-oriented life cycle assessment database. Materials and Design, 22(2), 101–105. doi:10.1016/s0261-3069(00)00049-2.

Xiao, D., Wang, H., Zhu, J., & Peng, S. (2001). Sequent and accumulative life cycle assessment of materials and products. Materials and Design, 22(2), 147–149. doi:10.1016/S0261-3069(00)00057-1.

Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., Koehler, A., Pennington, D., & Suh, S. (2009). Recent developments in Life Cycle Assessment. Journal of Environmental Management, 91(1), 1–21. doi:10.1016/j.jenvman.2009.06.018.

Finkbeiner, M., Inaba, A., Tan, R. B. H., Christiansen, K., & Klüppel, H. J. (2006). The new international standards for life cycle assessment: ISO 14040 and ISO 14044. International Journal of Life Cycle Assessment, 11(2), 80–85. doi:10.1065/lca2006.02.002.

Estanqueiro, B., Dinis Silvestre, J., de Brito, J., & Duarte Pinheiro, M. (2018). Environmental life cycle assessment of coarse natural and recycled aggregates for concrete. European Journal of Environmental and Civil Engineering, 22(4), 429–449. doi:10.1080/19648189.2016.1197161.

Turk, J., Cotič, Z., Mladenovič, A., & Šajna, A. (2015). Environmental evaluation of green concretes versus conventional concrete by means of LCA. Waste Management, 45, 194–205. doi:10.1016/j.wasman.2015.06.035.

Kleijer, A. L., Lasvaux, S., Citherlet, S., & Viviani, M. (2017). Product-specific Life Cycle Assessment of ready mix concrete: Comparison between a recycled and an ordinary concrete. Resources, Conservation and Recycling, 122, 210–218. doi:10.1016/j.resconrec.2017.02.004.

Colangelo, F., Petrillo, A., Cioffi, R., Borrelli, C., & Forcina, A. (2018). Life cycle assessment of recycled concretes: A case study in southern Italy. Science of the Total Environment, 615, 1506–1517. doi:10.1016/j.scitotenv.2017.09.107.

Colangelo, F., & Cioffi, R. (2017). Mechanical properties and durability of mortar containing fine fraction of demolition wastes produced by selective demolition in South Italy. Composites Part B: Engineering, 115, 43–50. doi:10.1016/j.compositesb.2016.10.045.

Vieira, D. R., Calmon, J. L., & Coelho, F. Z. (2016). Life cycle assessment (LCA) applied to the manufacturing of common and ecological concrete: A review. Construction and Building Materials, 124, 656–666. doi:10.1016/j.conbuildmat.2016.07.125.

Schmidt, M., & Fehling, E. (2005). Ultra-high-performance concrete: research, development and application in Europe. ACI Spec. Publ, 228(1), 51-78.

Graybeal, B. (2011). Ultra-high-performance concrete. No. FHWA-HRT-11-038, Federal Highway Administration, Washington, United States.

Meng, W., Valipour, M., & Khayat, K. H. (2017). Optimization and performance of cost-effective ultra-high-performance concrete. Materials and Structures/Materiaux et Constructions, 50(1), 29. doi:10.1617/s11527-016-0896-3.

Jamil, M., Kaish, A. B. M. A., Raman, S. N., & Zain, M. F. M. (2013). Pozzolanic contribution of rice husk ash in cementitious system. Construction and Building Materials, 47, 588–593. doi:10.1016/j.conbuildmat.2013.05.088.

Nair, D. G., Fraaij, A., Klaassen, A. A. K., & Kentgens, A. P. M. (2008). A structural investigation relating to the pozzolanic activity of rice husk ashes. Cement and Concrete Research, 38(6), 861–869. doi:10.1016/j.cemconres.2007.10.004.

Salas, A., Delvasto, S., de Gutierrez, R. M., & Lange, D. (2009). Comparison of two processes for treating rice husk ash for use in high performance concrete. Cement and Concrete Research, 39(9), 773–778. doi:10.1016/j.cemconres.2009.05.006.

Chao-Lung, H., Anh-Tuan, B. Le, & Chun-Tsun, C. (2011). Effect of rice husk ash on the strength and durability characteristics of concrete. Construction and Building Materials, 25(9), 3768–3772. doi:10.1016/j.conbuildmat.2011.04.009.

Chandrasekhar, S., Satyanarayana, K. G., Pramada, P. N., Raghavan, P., & Gupta, T. N. (2003). Processing, properties and applications of reactive silica from rice husk - An overview. Journal of Materials Science, 38(15), 3159–3168. doi:10.1023/A:1025157114800.

Babu, T. R., & Neeraja, D. (2016). Rice husk ash as supplementary material in concrete–A review. International Journal of chemTech Research, 9(5), 332-337.

Abuhaikal, M. M. A. (2011). Nano-chemomechanical assessment of rice husk ash cement by wavelength dispersive spectroscopy and nanoindentation. PhD Thesis, Massachusetts Institute of Technology, Massachusetts, United States.

Bobkowski, B. (2015). Performance of ternary cementitious binder systems incorporating untreated and treated pozzolanic materials. Knowledge Exchange for Young Scientists (KEYS), 9th – 11th June 2015, Dar es Salaam, Tanzania.

Rodríguez De Sensale, G. (2010). Effect of rice-husk ash on durability of cementitious materials. Cement and Concrete Composites, 32(9), 718–725. doi:10.1016/j.cemconcomp.2010.07.008.

Khan, M. I., & Alhozaimy, A. M. (2011). Properties of natural pozzolan and its potential utilization in environmental friendly concrete. Canadian Journal of Civil Engineering, 38(1), 71–78. doi:10.1139/L10-112.

Zhang, M. H., Lastra, R., & Malhotra, V. M. (1996). Rice-husk ash paste and concrete: Some aspects of hydration and the microstructure of the interfacial zone between the aggregate and paste. Cement and Concrete Research, 26(6), 963–977. doi:10.1016/0008-8846(96)00061-0.

Givi, A. N., Rashid, S. A., Aziz, F. N. A., & Salleh, M. A. M. (2010). Assessment of the effects of rice husk ash particle size on strength, water permeability and workability of binary blended concrete. Construction and Building Materials, 24(11), 2145–2150. doi:10.1016/j.conbuildmat.2010.04.045.

Kang, S. H., Hong, S. G., & Moon, J. (2019). The use of rice husk ash as reactive filler in ultra-high performance concrete. Cement and Concrete Research, 115, 389–400. doi:10.1016/j.cemconres.2018.09.004.

Hossain, S. S., & Roy, P. K. (2020). Waste rice husk ash derived sol: A potential binder in high alumina refractory castables as a replacement of hydraulic binder. Journal of Alloys and Compounds, 817, 152806. doi:10.1016/j.jallcom.2019.152806.

Mohseni, E., Kazemi, M. J., Koushkbaghi, M., Zehtab, B., & Behforouz, B. (2019). Evaluation of mechanical and durability properties of fiber-reinforced lightweight geopolymer composites based on rice husk ash and nano-alumina. Construction and Building Materials, 209, 532–540. doi:10.1016/j.conbuildmat.2019.03.067.

Boontawee, K., Pansuk, W., Tachai, L., & Kondoh, K. (2018). Effect of Rice Husk Ash Silica as Cement Replacement for Making Construction Mortar. Key Engineering Materials, 775, 624–629. doi:10.4028/www.scientific.net/kem.775.624.

Huang, H., Gao, X., Wang, H., & Ye, H. (2017). Influence of rice husk ash on strength and permeability of ultra-high-performance concrete. Construction and Building Materials, 149, 621–628. doi:10.1016/j.conbuildmat.2017.05.155.

Miyandehi, B. M., Feizbakhsh, A., Yazdi, M. A., Liu, Q. feng, Yang, J., & Alipour, P. (2016). Performance and properties of mortar mixed with nano-CuO and rice husk ash. Cement and Concrete Composites, 74, 225–235. doi:10.1016/j.cemconcomp.2016.10.006.

Jahangir, H., & Esfahani, M. R. (2020). Investigating loading rate and fibre densities influence on SRG - concrete bond behaviour. Steel and Composite Structures, 34(6), 877–889. doi:10.12989/scs.2020.34.6.877.

Agwa, I. S., Omar, O. M., Tayeh, B. A., & Abdelsalam, B. A. (2020). Effects of using rice straw and cotton stalk ashes on the properties of lightweight self-compacting concrete. Construction and Building Materials, 235, 117541. doi:10.1016/j.conbuildmat.2019.117541.

Jahangir, H., & Esfahani, M. R. (2022). Bond Behavior Investigation between steel reinforced grout composites and masonry substrate. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 46(5), 3519–3535. doi:10.1007/s40996-022-00826-9.

Wang, W., Meng, Y., & Wang, D. (2017). Effect of Rice Husk Ash on High-Temperature Mechanical Properties and Microstructure of Concrete. Kemija u Industriji, 66(3–4), 157–164. doi:10.15255/kui.2016.054.

Van Tuan, N., Ye, G., Van Breugel, K., Fraaij, A. L. A., & Bui, D. D. (2011). The study of using rice husk ash to produce ultra-high performance concrete. Construction and Building Materials, 25(4), 2030–2035. doi:10.1016/j.conbuildmat.2010.11.046.

Lu, J. X., Shen, P., Ali, H. A., & Poon, C. S. (2022). Mix design and performance of lightweight ultra-high-performance concrete. Materials and Design, 216, 110553. doi:10.1016/j.matdes.2022.110553.

Van Den Heede, P., & De Belie, N. (2012). Environmental impact and life cycle assessment (LCA) of traditional and “green” concretes: Literature review and theoretical calculations. Cement and Concrete Composites, 34(4), 431–442. doi:10.1016/j.cemconcomp.2012.01.004.

Liu, C., Ahn, C. R., An, X., & Lee, S. (2013). Life-Cycle Assessment of Concrete Dam Construction: Comparison of Environmental Impact of Rock-Filled and Conventional Concrete. Journal of Construction Engineering and Management, 139(12), 4013009. doi:10.1061/(asce)co.1943-7862.0000752.

Tait, M. W., & Cheung, W. M. (2016). A comparative cradle-to-gate life cycle assessment of three concrete mix designs. International Journal of Life Cycle Assessment, 21(6), 847–860. doi:10.1007/s11367-016-1045-5.

Anastasiou, E. K., Liapis, A., & Papayianni, I. (2015). Comparative life cycle assessment of concrete road pavements using industrial by-products as alternative materials. Resources, Conservation and Recycling, 101, 1–8. doi:10.1016/j.resconrec.2015.05.009.

Kurad, R., Silvestre, J. D., de Brito, J., & Ahmed, H. (2017). Effect of incorporation of high volume of recycled concrete aggregates and fly ash on the strength and global warming potential of concrete. Journal of Cleaner Production, 166, 485–502. doi:10.1016/j.jclepro.2017.07.236.

Iftikhar, B., Alih, S. C., Vafaei, M., Elkotb, M. A., Shutaywi, M., Javed, M. F., Deebani, W., Khan, M. I., & Aslam, F. (2022). Predictive modeling of compressive strength of sustainable rice husk ash concrete: Ensemble learner optimization and comparison. Journal of Cleaner Production, 348, 131285. doi:10.1016/j.jclepro.2022.131285.

ISO 14040:2006 (2006). Environmental management-Life cycle assessment-Principles and framework. International Organization for Standardization (ISO), Geneva, Switzerland.

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016). The Eco invent database version 3 (part I): overview and methodology. International Journal of Life Cycle Assessment, 21(9), 1218–1230. doi:10.1007/s11367-016-1087-8.

Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & van Zelm, R. (2017). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. International Journal of Life Cycle Assessment, 22(2), 138–147. doi:10.1007/s11367-016-1246-y.

Asadollahfardi, G., Katebi, A., Taherian, P., & Panahandeh, A. (2021). Environmental life cycle assessment of concrete with different mixed designs. International Journal of Construction Management, 21(7), 665–676. doi:10.1080/15623599.2019.1579015.

Pillai, R. G., Gettu, R., Santhanam, M., Rengaraju, S., Dhandapani, Y., Rathnarajan, S., & Basavaraj, A. S. (2019). Service life and life cycle assessment of reinforced concrete systems with limestone calcined clay cement (LC3). Cement and Concrete Research, 118, 111–119. doi:10.1016/j.cemconres.2018.11.019.

Sjunnesson, J. (2005). Life Cycle Assessment of Concrete. Master Thesis, Department of Technology and Society, Lund University, Lund, Sweden.

Kurda, R., Silvestre, J. D., & de Brito, J. (2018). Life cycle assessment of concrete made with high volume of recycled concrete aggregates and fly ash. Resources, Conservation and Recycling, 139, 407–417. doi:10.1016/j.resconrec.2018.07.004.

Garcia-Troncoso, N., Baykara, H., Cornejo, M. H., Riofrio, A., Tinoco-Hidalgo, M., & Flores-Rada, J. (2022). Comparative mechanical properties of conventional concrete mixture and concrete incorporating mining tailings sands. Case Studies in Construction Materials, 16, 1031. doi:10.1016/j.cscm.2022.e01031.

Anastasakis, L., & Mort, N. (2001). The development of self-organization techniques in modelling: a review of the group method of data handling (GMDH). Research Report, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom.

Ivakhnenko, A. G., Krotov, G. I., & Stepashko, V. (1983). Harmonic and Exponential Harmonic Gmdh Algorithms. Part 2. Multilayer Algorithms With and Without Calculation of Remainders. Soviet Automatic Control, 16(1), 1–9.

Naderpour, H., Rezazadeh Eidgahee, D., Fakharian, P., Rafiean, A. H., & Kalantari, S. M. (2020). A new proposed approach for moment capacity estimation of ferrocement members using Group Method of Data Handling. Engineering Science and Technology, an International Journal, 23(2), 382–391. doi:10.1016/j.jestch.2019.05.013.

Rezazadeh Eidgahee, D., Jahangir, H., Solatifar, N., Fakharian, P., & Rezaeemanesh, M. (2022). Data-driven estimation models of asphalt mixtures dynamic modulus using ANN, GP and combinatorial GMDH approaches. Neural Computing and Applications, 34(20), 17289–17314. doi:10.1007/s00521-022-07382-3.

Onyelowe, K. C., Kontoni, D. P. N., Ebid, A. M., Dabbaghi, F., Soleymani, A., Jahangir, H., & Nehdi, M. L. (2022). Multi-Objective Optimization of Sustainable Concrete Containing Fly Ash Based on Environmental and Mechanical Considerations. Buildings, 12(7), 948. doi:10.3390/buildings12070948.

Yang, Y., & Zhang, Q. (1997). A hierarchical analysis for rock engineering using artificial neural networks. Rock Mechanics and Rock Engineering, 30(4), 207–222. doi:10.1007/BF01045717.

Onyelowe, K. C., Shakeri, J., Amini-Khoshalan, H., Usungedo, T. F., & Alimoradi-Jazi, M. (2022). Computational Modeling of Desiccation Properties (CW, LS, and VS) of Waste-Based Activated Ash-Treated Black Cotton Soil for Sustainable Subgrade Using Artificial Neural Network, Gray-Wolf, and Moth-Flame Optimization Techniques. Advances in Materials Science and Engineering, 2022. doi:10.1155/2022/4602064.

Onyelowe, K. C., Ebid, A. M., de Jesús Arrieta Baldovino, J., & Onyia, M. E. (2022). Hydraulic conductivity predictive model of RHA-ameliorated laterite for solving landfill liner leachate, soil and water contamination and carbon emission problems. International Journal of Low-Carbon Technologies. doi:10.1093/ijlct/ctac077.

Shakeri, J., Khoshalan, H. A., Dehghani, H., Bascompta, M., & Onyelowe, K. (2022). Developing New Models for Flyrock Distance Assessment in Open-Pit Mines. Journal of Mining and Environment, 13(2), 377–391. doi:10.22044/jme.2022.11805.2170.

Moomivand, H., Amini Khoshalan, H., Shakeri, J., & Vandyousefi, H. (2022). Development of new comprehensive relations to assess rock fragmentation by blasting for different open pit mines using GEP algorithm and MLR procedure. International Journal of Mining and Geo-Engineering. doi:10.22059/IJMGE.2022.339174.594951.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-11-03

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Kennedy C. ONYELOWE, Ahmed M. Ebid, Hisham A. MADHI, Ariel RIOFRIO, Danial REZAZADEH EIDGAHEE, Haci BAYKARA, Atefeh SOLEYMANI, Denise-Penelope N. KONTONI, Jamshid SHAKERI, Hashem JAHANGIR

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message