Post-cyclic Loading Relationship Effects to the Shear Stress and Cyclic Shear Strain of Peat Soil
Abstract
Doi: 10.28991/CEJ-2022-08-12-08
Full Text: PDF
Keywords
References
Kishida, T., Boulanger, R. W., Abrahamson, N. A., Wehling, T. M., & Driller, M. W. (2009). Regression Models for Dynamic Properties of Highly Organic Soils. Journal of Geotechnical and Geoenvironmental Engineering, 135(4), 533–543. doi:10.1061/(asce)1090-0241(2009)135:4(533).
Kramer, S. L. (2000). Dynamic Response of Mercer Slough Peat. Journal of Geotechnical and Geoenvironmental Engineering, 126(6), 504–510. doi:10.1061/(asce)1090-0241(2000)126:6(504).
Boulanger, R. W., Arulnathan, R., Harder, L. F., Torres, R. A., & Driller, M. W. (1998). Dynamic Properties of Sherman Island Peat. Journal of Geotechnical and Geoenvironmental Engineering, 124(1), 12–20. doi:10.1061/(asce)1090-0241(1998)124:1(12).
Seed, H. B., & Chan, C. K. (1966). Clay Strength under Earthquake Loading Conditions. Journal of the Soil Mechanics and Foundations Division, 92(2), 53–78. doi:10.1061/jsfeaq.0000867.
Shafiee, A., Scott, J. B., & Jonathan, P. S. (2013). Laboratory Evaluation of Seismic Failure Mechanisms of Levees on Peat. PhD Thesis, University of California, Los Angeles. United States.
Mohamad, H. M., & Zainorabidin, A. (2021). Young’S Modulus of Peat Soil under Cyclic Loading. International Journal of GEOMATE, 21(84), 177–187. doi:10.21660/2021.84.j2164.
Das, B. M. (2007). Principles of geotechnical engineering. Thomson, Belmont, United States.
Varghese, R., Senthen Amuthan, M., Boominathan, A., & Banerjee, S. (2019). Cyclic and postcyclic behaviour of silts and silty sands from the Indo Gangetic Plain. Soil Dynamics and Earthquake Engineering, 125. doi:10.1016/j.soildyn.2019.105750.
Erken, A., Kaya, Z., & Şener, A. (2008). Post Cyclic Shear Strength of Fine Grained Soils in Adapazari–Turkey during 1999 Kocaeli Earthquake. 14th World Conference on Earthquake Engineering, 12-17 October, 2008, Beijing, China.
Karaca, H., Depci, T., Karta, M., & Coskun, M. A. (2016). Liquefaction Potential of Adiyaman Peat. IOP Conference Series: Earth and Environmental Science, 44, 052050. doi:10.1088/1755-1315/44/5/052050.
Zainorabidin, A., & Mohamad, H. M. (2016). Preliminary peat surveys in ecoregion delineation of North Borneo: Engineering perspective. Electronic Journal of Geotechnical Engineering, 21(12), 4485–4493.
Zainorabidin, A., & Mohamad, H. M. (2016). A geotechnical exploration of Sabah peat soil: Engineering classifications and field surveys. Electronic Journal of Geotechnical Engineering, 21(20), 6671–6687.
Zergoun, M., & Vaid, Y. P. (1994). Effective stress response of clay to undrained cyclic loading. Canadian Geotechnical Journal, 31(5), 714–727. doi:10.1139/t94-083.
Farrell E.R. (2012). Organics/peat soils. ICE Manual of Geotechnical Engineering, ICE Publishing, London, United Kingdom.
Zolkefle, S. N. A., Zainorabidin, A., Harun, S. F., & Mohamad, H. M. (2018). Influence of damping ratio and dynamic shear modulus for different locations of peat. International Journal of Integrated Engineering, 10(9), 147–151. doi:10.30880/ijie.2018.10.09.009.
Soltani-Jigheh, H., & Soroush, A. (2006). Post-cyclic Behavior of Compacted Clay-sand Mixtures. International Journal of Civil Engineerng, 4(3), 226–243.
Zainorabidin, A., & Bakar, I. (2003, July). Engineering properties of in-situ and modified hemic peat soil in Western Johor. Proceedings of 2nd International Conference on Advances in Soft Soil Engineering and Technology, 2-4 July, 2003, Putrajaya, Malaysia.
Zolkefle, S.N.A. (2014). The dynamic characteristic of Southwest Johor peat under different frequencies. Degree of Master in Civil Engineering Thesis, University Tun Hussein Onn Malaysia (UTHM), Johor Bahru, Malaysia.
Das, B. M., & Luo, Z. (2016). Principles of soil dynamics. Cengage Learning, Boston, United States.
Zainorabidin, A., & Mohamad, H. M. (2015). Pre- and post-cyclic behavior on monotonic shear strength of Penor peat. Electronic Journal of Geotechnical Engineering, 20(16), 6927–6935.
Zhu, Z., Zhang, C., Wang, J., Zhang, P., & Zhu, D. (2021). Cyclic Loading Test for the Small-Strain Shear Modulus of Saturated Soft Clay and Its Failure Mechanism. Geofluids, 2021, 13. doi:10.1155/2021/2083682.
Liu, Y., Luo, Q., Yang, X., Yuan, B., Luo, L., & Lai, M. (2019). Experimental study on dynamic deformation properties of muck soil under low frequency cyclic loading. Journal of Vibroengineering, 21(4), 1215–1226. doi:10.21595/jve.2019.20632.
Taukoor, V., Rutherford, C. J., & Olson, S. M. (2019). Cyclic Behavior of a Reconstituted Gulf of Mexico Clay. Civil and Environmental Engineering Geology. Journal Geotechnical Special Publication, March 24–27, 2019, Pennsylvania, United States. 313–321. doi:10.1061/9780784482100.032.
Chen, C., Xu, G., Zhou, Z., Kong, L., Zhang, X., & Yin, S. (2020). Undrained dynamic behaviour of peaty organic soil under long-term cyclic loading, Part II: Constitutive model and simulation. Soil Dynamics and Earthquake Engineering, 129, 279–291. doi:10.1016/j.soildyn.2019.01.039
Wang, S. (2011). Postcyclic behavior of low-plasticity silt. PhD Thesis, Missouri University of Science and Technology, Rolla, United States.
Prendergast, L. J., & Igoe, D. (2022). Examination of the reduction in natural frequency of laterally loaded piles due to strain-dependence of soil shear modulus. Ocean Engineering, 258. doi:10.1016/j.oceaneng.2022.111614.
Sezer, A., Karakan, E., & Tanrinian, N. (2019). Shear modulus and damping ratio of a non-plastic silt at large shear strains. E3S Web of Conferences, 92, 8007. doi:10.1051/e3sconf/20199208007.
DOI: 10.28991/CEJ-2022-08-12-08
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 HABIB MUSA BIN MOHAMAD
This work is licensed under a Creative Commons Attribution 4.0 International License.