Experimental Measurement and Simulation of Railway Track Irregularities
Abstract
Doi: 10.28991/CEJ-2022-08-10-014
Full Text: PDF
Keywords
References
Malveiro, J., Sousa, C., Ribeiro, D., & Calçada, R. (2018). Impact of track irregularities and damping on the fatigue damage of a railway bridge deck slab. Structure and Infrastructure Engineering, 14(9), 1257–1268. doi:10.1080/15732479.2017.1418010.
Xu, L., Li, Z., Zhao, Y., Yu, Z., & Wang, K. (2022). Modelling of vehicle-track related dynamics: a development of multi-finite-element coupling method and multi-time-step solution method. Vehicle System Dynamics, 60(4), 1097–1124. doi:10.1080/00423114.2020.1847298.
Pecile, B. (2017). Dynamic model of vehicle-railway interaction in the presence of geometric defects on the surfaces in contact. PhD Thesis, University of Valenciennes and Hainaut-Cambresis, Valenciennes, France. (In French).
Haigermoser, A., Luber, B., Rauh, J., & Gräfe, G. (2015). Road and track irregularities: Measurement, assessment and simulation. Vehicle System Dynamics, 53(7), 878–957. doi:10.1080/00423114.2015.1037312.
Nielsen, J. C. O., & Li, X. (2018). Railway track geometry degradation due to differential settlement of ballast/subgrade – Numerical prediction by an iterative procedure. Journal of Sound and Vibration, 412, 441–456. doi:10.1016/j.jsv.2017.10.005.
Kassou, F., Benbouziyane, J., Ghafiri, A., & Sabihi, A. (2021). A New Approach to Analyse the Consolidation of Soft Soils Improved by Vertical Drains and Submitted to Progressive Loading. KSCE Journal of Civil Engineering, 25(1), 51–59. doi:10.1007/s12205-020-0060-z.
Lamprea-Pineda, A. C., Connolly, D. P., & Hussein, M. F. M. (2022). Beams on elastic foundations – A review of railway applications and solutions. Transportation Geotechnics, 33, 100696. doi:10.1016/j.trgeo.2021.100696.
Blanco-Saura, A. E., Velarte-González, J. L., Ribes-Llario, F., & Real-Herráiz, J. I. (2018). Study of the dynamic vehicle-track interaction in a railway turnout. Multibody System Dynamics, 43(1), 21–36. doi:10.1007/s11044-017-9579-2.
Kukulski, J., Gołębiowski, P., Makowski, J., Jacyna-Gołda, I., & Żak, J. (2021). Effective method for diagnosing continuous welded track condition based on experimental research. Energies, 14(10). doi:10.3390/en14102889.
Skarova, A., Harkness, J., Keillor, M., Milne, D., & Powrie, W. (2022). Review of factors affecting stress-free temperature in the continuous welded rail track. Energy Reports, 8, 769–775. doi:10.1016/j.egyr.2022.05.046.
El Moueddeb, M., Louf, F., Boucard, P. A., Dadié, F., Saussine, G., & Sorrentino, D. (2020). A lightweight numerical model of railway track to predict mechanical stress state in the rail. International Journal of Transport Development and Integration, 4(2), 152–162. doi:10.2495/TDI-V4-N2-152-162.
Groß-Thebing, A., Knothe, K., & Hempelmann, K. (1992). Wheel-Rail contact mechanics for short wavelengths rail irregularities. Vehicle System Dynamics, 20(Sup1), 210–224. doi:10.1080/00423119208969399.
Kedia, N. K., Kumar, A., & Singh, Y. (2021). Effect of Rail Irregularities and Rail Pad on Track Vibration and Noise. KSCE Journal of Civil Engineering, 25(4), 1341–1352. doi:10.1007/s12205-021-1345-6.
Kouroussis, G., Gazetas, G., Anastasopoulos, I., Conti, C., & Verlinden, O. (2011). Discrete modelling of vertical track-soil coupling for vehicle-track dynamics. Soil Dynamics and Earthquake Engineering, 31(12), 1711–1723. doi:10.1016/j.soildyn.2011.07.007.
Bogdevičius, M., Žygiene, R., Dailydka, S., Bartulis, V., Skrickij, V., & Pukalskas, S. (2015). The dynamic behaviour of a wheel flat of a railway vehicle and rail irregularities. Transport, 30(2), 217–232. doi:10.3846/16484142.2015.1051108.
Salcher, P., Adam, C., & Kuisle, A. (2019). A Stochastic View on the Effect of Random Rail Irregularities on Railway Bridge Vibrations. Structure and Infrastructure Engineering, 15(12), 1649–1664. doi:10.1080/15732479.2019.1640748.
Nielsen, J. C. O., Lombaert, G., & François, S. (2015). A hybrid model for prediction of ground-borne vibration due to discrete wheel/rail irregularities. Journal of Sound and Vibration, 345, 103–120. doi:10.1016/j.jsv.2015.01.021.
Soyiç Leblebici, A., & Türkay, S. (2017). Influence of Wheel-Rail Contact Stiffness on the H2 Controlled Active Suspension Design. IFAC-PapersOnLine, 50(1), 3642–3647. doi:10.1016/j.ifacol.2017.08.710.
Zhang, X., Thompson, D., & Sheng, X. (2020). Differences between Euler-Bernoulli and Timoshenko beam formulations for calculating the effects of moving loads on a periodically supported beam. Journal of Sound and Vibration, 481, 115432. doi:10.1016/j.jsv.2020.115432.
Martínez-Casas, J., Giner-Navarro, J., Baeza, L., & Denia, F. D. (2017). Improved railway wheelset–track interaction model in the high-frequency domain. Journal of Computational and Applied Mathematics, 309, 642–653. doi:10.1016/j.cam.2016.04.034.
Xu, L., Chen, X., Li, X., & He, X. (2018). Development of a railway wagon-track interaction model: Case studies on excited tracks. Mechanical Systems and Signal Processing, 100, 877–898. doi:10.1016/j.ymssp.2017.08.008.
Guo, Y., & Zhai, W. (2018). Long-term prediction of track geometry degradation in high-speed vehicle–ballastless track system due to differential subgrade settlement. Soil Dynamics and Earthquake Engineering, 113, 1–11. doi:10.1016/j.soildyn.2018.05.024.
DOI: 10.28991/CEJ-2022-08-10-014
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 fouzia kassou
This work is licensed under a Creative Commons Attribution 4.0 International License.