Assessing the Effect of GGBFS Content on Mechanical and Durability Properties of High-Strength Mortars

Si-Huy Ngo, Ngoc-Tan Nguyen, Xuan-Hien Nguyen

Abstract


As a large amount of steel is produced for the industrialization and modernization of Vietnam, a correspondingly large quantity of steel slag is also released annually. Besides, the demand for mortar is increasing due to urbanization, especially for the high-strength and durability mortar used for important constructions and structures in aggressive environmental areas. This study aims to carry out further research into high-strength mortars incorporating ground granulated blast furnace slag (GGBFS). The control mixture was designed with a water-to-binder ratio of 0.2, and the amount of silica fume used was equal to 25% of the total binder amount by mass. Four other mixtures were designed using GGBFS to substitute for 15, 30, 45, and 60% of cement by mass. The engineering properties of fresh and hardened mortars were comprehensively investigated, especially the durability properties. The microstructure of these mortars was also examined using scanning electron microscopy. Test results show that replacing 15 or 30% of cement with GGBFS yields an improvement in mortar's strength and durability properties. All the mortars in this study show excellent qualities with high strength, low water absorption, and high resistance to chloride attack. Moreover, the presence of GGBFS reduces the shrinkage of mortar caused by the drying process.

 

Doi: 10.28991/CEJ-2022-08-05-07

Full Text: PDF


Keywords


High-Strength Mortar, GGBFS, Drying Shrinkage, Rapid Ion Penetration, Durability.

References


Malhotra, V. M. (2002). Introduction: Sustainable Development and Concrete Technology. Concrete International, 24(7), 1-22.

Cheah, C. B., Part, W. K., & Ramli, M. (2015). The hybridizations of coal fly ash and wood ash for the fabrication of low alkalinity geopolymer load bearing block cured at ambient temperature. Construction and Building Materials, 88, 41–55. doi:10.1016/j.conbuildmat.2015.04.020.

Chindaprasirt, P., Jaturapitakkul, C., Chalee, W., & Rattanasak, U. (2009). Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Management, 29(2), 539–543. doi:10.1016/j.wasman.2008.06.023.

Kumar, G., & Mishra, S. S. (2021). Effect of ggbfs on workability and strength of alkali-activated geopolymer concrete. Civil Engineering Journal (Iran), 7(6), 1036–1049. doi:10.28991/cej-2021-03091708.

Shehata, N., Mohamed, O. A., Sayed, E. T., Abdelkareem, M. A., & Olabi, A. G. (2022). Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials. Science of the Total Environment, 836, 155577. doi:10.1016/j.scitotenv.2022.155577.

Borrero, E. L. S., Farhangi, V., Jadidi, K., & Karakouzian, M. (2021). An Experimental Study on Concrete’s Durability and Mechanical Characteristics Subjected to Different Curing Regimes. Civil Engineering Journal, 7(4), 676–689. doi:10.28991/cej-2021-03091681.

Yun, C. M., Rahman, M. R., Phing, C. Y. W., Chie, A. W. M., & Bakri, M. K. Bin. (2020). The curing times effect on the strength of ground granulated blast furnace slag (GGBFS) mortar. Construction and Building Materials, 260, 120662. doi:10.1016/j.conbuildmat.2020.120622.

Aydin, S. (2013). A ternary optimisation of mineral additives of alkali activated cement mortars. Construction and Building Materials, 43, 131–138. doi:10.1016/j.conbuildmat.2013.02.005.

Delhomme, F., Ambroise, J., & Limam, A. (2012). Effects of high temperatures on mortar specimens containing Portland cement and GGBFS. Materials and structures, 45(11), 1685-1692. doi:10.1617/s11527-012-9865-7.

Vanoutrive, H., Minne, P., Van de Voorde, I., Cizer, Ö., & Gruyaert, E. (2022). Carbonation of cement paste with GGBFS: Effect of curing duration, replacement level and CO2 concentration on the reaction products and CO2 buffer capacity. Cement and Concrete Composites, 129, 104449. doi:10.1016/j.cemconcomp.2022.104449.

Sahoo, K. K., Dhir, P. K., Behera, S. K., & Biswal, D. R. (2022). Influence of Ground-Granulated Blast-Furnace Slag on the Structural Performance of Self-Compacting Concrete. Practice Periodical on Structural Design and Construction, 27(3), 4022019. doi:10.1061/(asce)sc.1943-5576.0000697.

Jose, S. K., Soman, M., & Sheela Evangeline, Y. (2021). Ecofriendly building blocks using foamed concrete with ground granulated blast furnace slag. International Journal of Sustainable Engineering, 14(4), 776–784. doi:10.1080/19397038.2020.1836064.

Ngo, S. H., & Huynh, T. P. (2022). Effect of paste content on long-term strength and durability performance of green mortars. Journal of Science and Technology in Civil Engineering (STCE)-HUCE, 16(1), 113–125. doi:10.31814/stce.huce(nuce)2022-16(1)-10.

Zheng, W., Luo, B., & Wang, Y. (2013). Compressive and tensile properties of reactive powder concrete with steel fibres at elevated temperatures. Construction and Building Materials, 41, 844–851. doi:10.1016/j.conbuildmat.2012.12.066.

Canbaz, M. (2014). The effect of high temperature on reactive powder concrete. Construction and Building Materials, 70, 508–513. doi:10.1016/j.conbuildmat.2014.07.097.

Hiremath, P. N., & Yaragal, S. C. (2018). Performance evaluation of reactive powder concrete with polypropylene fibers at elevated temperatures. Construction and Building Materials, 169, 499–512. doi:10.1016/j.conbuildmat.2018.03.020.

Liu, C. T., & Huang, J. S. (2009). Fire performance of highly flowable reactive powder concrete. Construction and Building Materials, 23(5), 2072–2079. doi:10.1016/j.conbuildmat.2008.08.022.

Lee, M. G., Wang, Y. C., & Chiu, C. T. (2007). A preliminary study of reactive powder concrete as a new repair material. Construction and Building Materials, 21(1), 182–189. doi:10.1016/j.conbuildmat.2005.06.024.

Peng, Y., Zhang, J., Liu, J., Ke, J., & Wang, F. (2015). Properties and microstructure of reactive powder concrete having a high content of phosphorous slag powder and silica fume. Construction and Building Materials, 101, 482–487. doi:10.1016/j.conbuildmat.2015.10.046.

Cwirzen, A., Penttala, V., & Vornanen, C. (2008). Reactive powder based concretes: Mechanical properties, durability and hybrid use with OPC. Cement and Concrete Research, 38(10), 1217–1226. doi:10.1016/j.cemconres.2008.03.013.

ASTM C1437-15. (2020). Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM International, Pennsylvania, United States. doi:10.1520/C1437-15.

ASTM C138/C138M-17a. (2017). Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric). ASTM International, Pennsylvania, United States. doi:10.1520/C0138_C0138M-17A.

ASTM C348-21. (2021). Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. ASTM International, Pennsylvania, United States. doi:10.1520/C0348-21.

ASTM C349-18. (2018). Standard Test Method for Compressive Strength of Hydraulic-Cement Mortars (Using Portions of Prisms Broken in Flexure). ASTM International, Pennsylvania, United States. doi:10.1520/C0349-18.

Nguyen, N. T., Sbartaï, Z. M., Lataste, J. F., Breysse, D., & Bos, F. (2013). Assessing the spatial variability of concrete structures using NDT techniques - Laboratory tests and case study. Construction and Building Materials, 49, 240–250. doi:10.1016/j.conbuildmat.2013.08.011.

Nguyen, N. T., Sbartaï, Z. M., Lataste, J. F., Breysse, D., & Bos, F. (2015). Non-destructive evaluation of the spatial variability of reinforced concrete structures. Mechanics and Industry, 16(1), 103. doi:10.1051/meca/2014064.

ASTM C597-16. (2016). Standard Test Method for Pulse Velocity through Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0597-16.

Zhang, S. P., & Zong, L. (2014). Evaluation of Relationship between Water Absorption and Durability of Concrete Materials. Advances in Materials Science and Engineering, 2014, 1–8. doi:10.1155/2014/650373.

ASTM C642-21. (2022). Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM International, Pennsylvania, United States. doi:10.1520/C0642-21.

Zhang, M. H., Tam, C. T., & Leow, M. P. (2003). Effect of water-to-cementitious materials ratio and silica fume on the autogenous shrinkage of concrete. Cement and Concrete Research, 33(10), 1687–1694. doi:10.1016/S0008-8846(03)00149-2.

ASTM C 490/C490M-21. (2021). Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0490_C0490M-21.

ASTM C1202-19. (2022). Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International, Pennsylvania, United States. doi:10.1520/C1202-19.

Oner, A., & Akyuz, S. (2007). An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cement and Concrete Composites, 29(6), 505–514. doi:10.1016/j.cemconcomp.2007.01.001.

Siddique, R., & Bennacer, R. (2012). Use of iron and steel industry by-product (GGBS) in cement paste and mortar. Resources, Conservation and Recycling, 69, 29–34. doi:10.1016/j.resconrec.2012.09.002.

Kou, S. C., Poon, C. S., & Agrela, F. (2011). Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures. Cement and Concrete Composites, 33(8), 788–795. doi:10.1016/j.cemconcomp.2011.05.009.

Yazici, H., Yardimci, M. Y., Yiǧiter, H., Aydin, S., & Türkel, S. (2010). Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag. Cement and Concrete Composites, 32(8), 639–648. doi:10.1016/j.cemconcomp.2010.07.005.

Yazici, H., Deniz, E., & Baradan, B. (2013). The effect of autoclave pressure, temperature and duration time on mechanical properties of reactive powder concrete. Construction and Building Materials, 42, 53–63. doi:10.1016/j.conbuildmat.2013.01.003.

Yigiter, H., Aydin, S., Yazici, H., & Yardimci, M. Y. (2012). Mechanical performance of low cement reactive powder concrete (LCRPC). Composites Part B: Engineering, 43(8), 2907–2914. doi:10.1016/j.compositesb.2012.07.042.

Bogas, J. A., Gomes, M. G., & Gomes, A. (2013). Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method. Ultrasonics, 53(5), 962–972. doi:10.1016/j.ultras.2012.12.012.

Solís-Carcaño, R., & Moreno, E. I. (2008). Evaluation of concrete made with crushed limestone aggregate based on ultrasonic pulse velocity. Construction and Building Materials, 22(6), 1225–1231. doi:10.1016/j.conbuildmat.2007.01.014.

Hatungimana, D., Taşköprü, C., İçhedef, M., Saç, M. M., & Yazıcı, Ş. (2019). Compressive strength, water absorption, water sorptivity and surface radon exhalation rate of silica fume and fly ash based mortar. Journal of Building Engineering, 23, 369–376. doi:10.1016/j.jobe.2019.01.011.

Luo, R., Cai, Y., Wang, C., & Huang, X. (2003). Study of chloride binding and diffusion in GGBS concrete. Cement and Concrete Research, 33(1), 1–7. doi:10.1016/S0008-8846(02)00712-3.

Yeau, K. Y., & Kim, E. K. (2005). An experimental study on corrosion resistance of concrete with ground granulate blast-furnace slag. Cement and Concrete Research, 35(7), 1391–1399. doi:10.1016/j.cemconres.2004.11.010.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-05-07

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Tan Ngoc Nguyen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message