Assessing the Effect of GGBFS Content on Mechanical and Durability Properties of High-Strength Mortars
Abstract
Doi: 10.28991/CEJ-2022-08-05-07
Full Text: PDF
Keywords
References
Malhotra, V. M. (2002). Introduction: Sustainable Development and Concrete Technology. Concrete International, 24(7), 1-22.
Cheah, C. B., Part, W. K., & Ramli, M. (2015). The hybridizations of coal fly ash and wood ash for the fabrication of low alkalinity geopolymer load bearing block cured at ambient temperature. Construction and Building Materials, 88, 41–55. doi:10.1016/j.conbuildmat.2015.04.020.
Chindaprasirt, P., Jaturapitakkul, C., Chalee, W., & Rattanasak, U. (2009). Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Management, 29(2), 539–543. doi:10.1016/j.wasman.2008.06.023.
Kumar, G., & Mishra, S. S. (2021). Effect of ggbfs on workability and strength of alkali-activated geopolymer concrete. Civil Engineering Journal (Iran), 7(6), 1036–1049. doi:10.28991/cej-2021-03091708.
Shehata, N., Mohamed, O. A., Sayed, E. T., Abdelkareem, M. A., & Olabi, A. G. (2022). Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials. Science of the Total Environment, 836, 155577. doi:10.1016/j.scitotenv.2022.155577.
Borrero, E. L. S., Farhangi, V., Jadidi, K., & Karakouzian, M. (2021). An Experimental Study on Concrete’s Durability and Mechanical Characteristics Subjected to Different Curing Regimes. Civil Engineering Journal, 7(4), 676–689. doi:10.28991/cej-2021-03091681.
Yun, C. M., Rahman, M. R., Phing, C. Y. W., Chie, A. W. M., & Bakri, M. K. Bin. (2020). The curing times effect on the strength of ground granulated blast furnace slag (GGBFS) mortar. Construction and Building Materials, 260, 120662. doi:10.1016/j.conbuildmat.2020.120622.
Aydin, S. (2013). A ternary optimisation of mineral additives of alkali activated cement mortars. Construction and Building Materials, 43, 131–138. doi:10.1016/j.conbuildmat.2013.02.005.
Delhomme, F., Ambroise, J., & Limam, A. (2012). Effects of high temperatures on mortar specimens containing Portland cement and GGBFS. Materials and structures, 45(11), 1685-1692. doi:10.1617/s11527-012-9865-7.
Vanoutrive, H., Minne, P., Van de Voorde, I., Cizer, Ö., & Gruyaert, E. (2022). Carbonation of cement paste with GGBFS: Effect of curing duration, replacement level and CO2 concentration on the reaction products and CO2 buffer capacity. Cement and Concrete Composites, 129, 104449. doi:10.1016/j.cemconcomp.2022.104449.
Sahoo, K. K., Dhir, P. K., Behera, S. K., & Biswal, D. R. (2022). Influence of Ground-Granulated Blast-Furnace Slag on the Structural Performance of Self-Compacting Concrete. Practice Periodical on Structural Design and Construction, 27(3), 4022019. doi:10.1061/(asce)sc.1943-5576.0000697.
Jose, S. K., Soman, M., & Sheela Evangeline, Y. (2021). Ecofriendly building blocks using foamed concrete with ground granulated blast furnace slag. International Journal of Sustainable Engineering, 14(4), 776–784. doi:10.1080/19397038.2020.1836064.
Ngo, S. H., & Huynh, T. P. (2022). Effect of paste content on long-term strength and durability performance of green mortars. Journal of Science and Technology in Civil Engineering (STCE)-HUCE, 16(1), 113–125. doi:10.31814/stce.huce(nuce)2022-16(1)-10.
Zheng, W., Luo, B., & Wang, Y. (2013). Compressive and tensile properties of reactive powder concrete with steel fibres at elevated temperatures. Construction and Building Materials, 41, 844–851. doi:10.1016/j.conbuildmat.2012.12.066.
Canbaz, M. (2014). The effect of high temperature on reactive powder concrete. Construction and Building Materials, 70, 508–513. doi:10.1016/j.conbuildmat.2014.07.097.
Hiremath, P. N., & Yaragal, S. C. (2018). Performance evaluation of reactive powder concrete with polypropylene fibers at elevated temperatures. Construction and Building Materials, 169, 499–512. doi:10.1016/j.conbuildmat.2018.03.020.
Liu, C. T., & Huang, J. S. (2009). Fire performance of highly flowable reactive powder concrete. Construction and Building Materials, 23(5), 2072–2079. doi:10.1016/j.conbuildmat.2008.08.022.
Lee, M. G., Wang, Y. C., & Chiu, C. T. (2007). A preliminary study of reactive powder concrete as a new repair material. Construction and Building Materials, 21(1), 182–189. doi:10.1016/j.conbuildmat.2005.06.024.
Peng, Y., Zhang, J., Liu, J., Ke, J., & Wang, F. (2015). Properties and microstructure of reactive powder concrete having a high content of phosphorous slag powder and silica fume. Construction and Building Materials, 101, 482–487. doi:10.1016/j.conbuildmat.2015.10.046.
Cwirzen, A., Penttala, V., & Vornanen, C. (2008). Reactive powder based concretes: Mechanical properties, durability and hybrid use with OPC. Cement and Concrete Research, 38(10), 1217–1226. doi:10.1016/j.cemconres.2008.03.013.
ASTM C1437-15. (2020). Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM International, Pennsylvania, United States. doi:10.1520/C1437-15.
ASTM C138/C138M-17a. (2017). Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric). ASTM International, Pennsylvania, United States. doi:10.1520/C0138_C0138M-17A.
ASTM C348-21. (2021). Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. ASTM International, Pennsylvania, United States. doi:10.1520/C0348-21.
ASTM C349-18. (2018). Standard Test Method for Compressive Strength of Hydraulic-Cement Mortars (Using Portions of Prisms Broken in Flexure). ASTM International, Pennsylvania, United States. doi:10.1520/C0349-18.
Nguyen, N. T., Sbartaï, Z. M., Lataste, J. F., Breysse, D., & Bos, F. (2013). Assessing the spatial variability of concrete structures using NDT techniques - Laboratory tests and case study. Construction and Building Materials, 49, 240–250. doi:10.1016/j.conbuildmat.2013.08.011.
Nguyen, N. T., Sbartaï, Z. M., Lataste, J. F., Breysse, D., & Bos, F. (2015). Non-destructive evaluation of the spatial variability of reinforced concrete structures. Mechanics and Industry, 16(1), 103. doi:10.1051/meca/2014064.
ASTM C597-16. (2016). Standard Test Method for Pulse Velocity through Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0597-16.
Zhang, S. P., & Zong, L. (2014). Evaluation of Relationship between Water Absorption and Durability of Concrete Materials. Advances in Materials Science and Engineering, 2014, 1–8. doi:10.1155/2014/650373.
ASTM C642-21. (2022). Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM International, Pennsylvania, United States. doi:10.1520/C0642-21.
Zhang, M. H., Tam, C. T., & Leow, M. P. (2003). Effect of water-to-cementitious materials ratio and silica fume on the autogenous shrinkage of concrete. Cement and Concrete Research, 33(10), 1687–1694. doi:10.1016/S0008-8846(03)00149-2.
ASTM C 490/C490M-21. (2021). Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0490_C0490M-21.
ASTM C1202-19. (2022). Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International, Pennsylvania, United States. doi:10.1520/C1202-19.
Oner, A., & Akyuz, S. (2007). An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cement and Concrete Composites, 29(6), 505–514. doi:10.1016/j.cemconcomp.2007.01.001.
Siddique, R., & Bennacer, R. (2012). Use of iron and steel industry by-product (GGBS) in cement paste and mortar. Resources, Conservation and Recycling, 69, 29–34. doi:10.1016/j.resconrec.2012.09.002.
Kou, S. C., Poon, C. S., & Agrela, F. (2011). Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures. Cement and Concrete Composites, 33(8), 788–795. doi:10.1016/j.cemconcomp.2011.05.009.
Yazici, H., Yardimci, M. Y., Yiǧiter, H., Aydin, S., & Türkel, S. (2010). Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag. Cement and Concrete Composites, 32(8), 639–648. doi:10.1016/j.cemconcomp.2010.07.005.
Yazici, H., Deniz, E., & Baradan, B. (2013). The effect of autoclave pressure, temperature and duration time on mechanical properties of reactive powder concrete. Construction and Building Materials, 42, 53–63. doi:10.1016/j.conbuildmat.2013.01.003.
Yigiter, H., Aydin, S., Yazici, H., & Yardimci, M. Y. (2012). Mechanical performance of low cement reactive powder concrete (LCRPC). Composites Part B: Engineering, 43(8), 2907–2914. doi:10.1016/j.compositesb.2012.07.042.
Bogas, J. A., Gomes, M. G., & Gomes, A. (2013). Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method. Ultrasonics, 53(5), 962–972. doi:10.1016/j.ultras.2012.12.012.
Solís-Carcaño, R., & Moreno, E. I. (2008). Evaluation of concrete made with crushed limestone aggregate based on ultrasonic pulse velocity. Construction and Building Materials, 22(6), 1225–1231. doi:10.1016/j.conbuildmat.2007.01.014.
Hatungimana, D., Taşköprü, C., İçhedef, M., Saç, M. M., & Yazıcı, Ş. (2019). Compressive strength, water absorption, water sorptivity and surface radon exhalation rate of silica fume and fly ash based mortar. Journal of Building Engineering, 23, 369–376. doi:10.1016/j.jobe.2019.01.011.
Luo, R., Cai, Y., Wang, C., & Huang, X. (2003). Study of chloride binding and diffusion in GGBS concrete. Cement and Concrete Research, 33(1), 1–7. doi:10.1016/S0008-8846(02)00712-3.
Yeau, K. Y., & Kim, E. K. (2005). An experimental study on corrosion resistance of concrete with ground granulate blast-furnace slag. Cement and Concrete Research, 35(7), 1391–1399. doi:10.1016/j.cemconres.2004.11.010.
DOI: 10.28991/CEJ-2022-08-05-07
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Tan Ngoc Nguyen
This work is licensed under a Creative Commons Attribution 4.0 International License.