A Statistical Study to Investigate the Efficiency of Steel and Polypropylene Fiber in Enhancing the Durability Properties of Concrete Composites

Niraj Kumar Singh, Baboo Rai

Abstract


Concrete deterioration is associated with factors like surface abrasion and transport of water through capillary action in the concrete matrix. These factors may catalyze other forms of deformation such as cracking and corrosion of reinforcing steel. This paper presents an experimental evaluation to compare the effectiveness of steel and polypropylene fiber in enhancing the mechanical and durability properties, in terms of impact, sorptivity, and abrasion. In the present study, abrasion resistance is strongly related to flexural strength as high correlation coefficient existed as compared to that of compressive strength and split tensile strength. Sorptivity test results demonstrated a substantial decrease in capillary porosity when PPF is used in concrete.  The average initial sorptivity versus fiber volume fraction represents a linear relationship with high R2 value. Positive correlations were also detected between abrasion and initial sorptivity of ordinary Portland cement concrete composite with polypropylene fiber.

 


Keywords


Fiber; Impact Energy; Ductility Index; Abrasion; Sorptivity.

References


K.G. Kuder, S.P. Shah, "Processing of high-performance fiber-reinforced cement-based composites", Constr. Build. Mater. 24 (2010) 181–186. doi:10.1016/j.conbuildmat.2007.06.018.

P.N. Balaguru, S.P. Shah, "Fiber-reinforced Cement Composites", McGraw-Hill Inc, New York, 1992.

A. Lau, M. Anson, "Effect of high temperatures on high performance steel fibre reinforced concrete", Cem. Concr. Res. 36 (2006) 1698–1707. doi:10.1016/j.cemconres.2006.03.024.

H.M. Vogel, D. Svecova, "Evaluation of elastic modulus for high-strength concrete", ACI Mater. J. 109 (2012) 313–322. doi:10.14359/51683821.

A.S. Ezeldin, P.N. Balaguru, "Bond behavior of normal and high-strength fiber reinforced concrete", ACI Mater. J. 86 (1989) 515–524. doi:10.14359/2141.

N. Dinh, K. Choi, H. Kim, "Mechanical Properties and Modeling of Amorphous Metallic Fiber-Reinforced Concrete in Compression", Int. J. Concr. Struct. Mater. 10 (2016) 221–236. doi:http://dx.doi.org/10.1007/s40069-016-0144-9.

S. Abdallah, M. Fan, X. Zhou, S. Le Geyt, "Anchorage Effects of Various Steel Fibre Architectures for Concrete Reinforcement", Int. J. Concr. Struct. Mater. 10 (2016) 325–335. doi:10.1007/s40069-016-0148-5.

F. Bencardino, L. Rizzuti, G. Spadea, R.N. Swamy, "Experimental evaluation of fiber reinforced concrete fracture properties", Compos. Part B Eng. 41 (2010) 17–24. doi:10.1016/j.compositesb.2009.09.002.

H.S.S. Abou El-Mal, A.S. Sherbini, H.E.M. Sallam, "Mode II Fracture Toughness of Hybrid FRCs", Int. J. Concr. Struct. Mater. 9 (2015). doi:10.1007/s40069-015-0117-4.

C. Sorensen, E. Berge, E.B. Nikolaisen, "Investigation of Fiber Distribution in Concrete Batches Discharged from Ready-Mix Truck", Int. J. Concr. Struct. Mater. 8 (2014) 279–287. doi:10.1007/s40069-014-0083-2.

M. Hassanpour, P. Shafigh, H. Bin Mahmud, "Lightweight aggregate concrete fiber reinforcement - A review", Constr. Build. Mater. 37 (2012) 452–461. doi:10.1016/j.conbuildmat.2012.07.071.

J.A.O. Barros, J. Senacruz, "Fracture energy of steel fiber-reinforced concrete", Mech. Compos. Mater. Struct. 8 (2001) 29–45. doi:10.1080/10759410119428.

K. Ghavami, "Bamboo as reinforcement in structural concrete elements", Cem. Concr. Compos. 27 (2005) 637–649. doi:10.1016/j.cemconcomp.2004.06.002.

Ş. Yazıcı, G. İnan, V. Tabak, "Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC", Constr. Build. Mater. 21 (2007) 1250–1253. doi:10.1016/j.conbuildmat.2006.05.025.

A. Bentur, S. Mindess, "Fibre Reinforced Cementitious Composites: Second Edition", 2007.

T. Tchrakian, D. O’Dwyer, R.P. West, "Load spreading and moment distribution in fiber reinforced slabs on grade", Trinity Coll. Dublin, Irel. (2008).

S. Kazemi, A.S. Lubell, "Influence of Specimen Size and Fiber Content on Mechanical Properties of Ultra-High-Performance Fiber-Reinforced Concrete", ACI Mater. J. 109 (2012) 675–684. doi:10.14359/51684165.

A.E. Richardson, "Compressive strength of concrete with polypropylene fibre additions", Struct. Surv. 24 (2006) 138–153. doi:10.1108/02630800610666673.

O. Kayali, M.. Haque, B. Zhu, "Some characteristics of high strength fiber reinforced lightweight aggregate concrete", Cem. Concr. Compos. 25 (2003) 207–213. doi:10.1016/S0958-9465(02)00016-1.

P. Soroushian, Z. Bayasi, "Fiber-Type Effects on the Performance of Steel Fiber Reinforced Concrete", ACI Mater. J. 88 (1991) 129–134.

K. Behfarnia, A. Behravan, "Application of high performance polypropylene fibers in concrete lining of water tunnels", Mater. Des. 55 (2014) 274–279. doi:10.1016/j.matdes.2013.09.075.

P. Zhang, Q.F. Li, "Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume", Compos. Part B Eng. 45 (2013) 1587–1594. doi:10.1016/j.compositesb.2012.10.006.

O. Karahan, C.D. Atiş, "The Durability Properties of Polypropylene Fiber Reinforced Fly Ash Concrete", Mater. Des. 32 (2011) 1044–1049. doi:10.1016/j.matdes.2010.07.011.

S.K. Al-Oraimi, a. C. Seibi, "Mechanical characterisation and impact behaviour of concrete reinforced with natural fibres", Compos. Struct. 32 (1995) 165–171. doi:10.1016/0263-8223(95)00043-7.

X.X. Zhang, G. Ruiz, R.C. Yu, "A new drop-weight impact machine for studying fracture processes in structural concrete", Strain. 46 (2010) 252–257. doi:10.1111/j.1475-1305.2008.00574.x.

S.M. Soleimani, N. Banthia, "A novel drop weight impact setup for testing reinforced concrete beams", Exp. Tech. 38 (2014) 72–79. doi:10.1111/j.1747-1567.2012.00810.x.

R.Z. Al-Rousan, M.A. Alhassan, H. Al-Salman, "Impact resistance of polypropylene fiber reinforced concrete two-way slabs", Struct. Eng. Mech. 62 (2017) 373–380. doi:10.12989/sem.2017.62.3.373.

P. Máca, R. Sovják, P. Konvalinka, "Mix design of UHPFRC and its response to projectile impact", Int. J. Impact Eng. 63 (2014) 158–163. doi:10.1016/j.ijimpeng.2013.08.003.

M. Halvaei, M. Jamshidi, M. Latifi, "Effects of Hybridization of Carbon and Polypropylene Short Fibers as Reinforcement on Flexural Properties of Fine Aggregate Concretes", Civ. Eng. J. 2 (2016) 520–528.

R.E. Graves, "Significance of Tests and Properties of Concrete and Concrete-Making Materials", STP 169D, in: Annu. B. ASTM Stand., 2007: pp. 337–345. doi: 10.1520/STP37742S.

Y.W. Liu, T. Yen, T.H. Hsu, "Abrasion erosion of concrete by water-borne sand", Cem. Concr. Res. 36 (2006) 1814–1820. doi:10.1016/j.cemconres.2005.03.018.

T.C. Liu, "Maintenance and Preservation of Concrete Structures EM DASH 3. Abrasion Erosion Resistance Of Concrete", in: Tech. Rep. – US Army Eng. Waterw. Exp. Station. NO.C -78-4, 1980: p. 129.

J. Alexanderson, "Polymer Cement Concrete For Industrial Floors", Polym. Concr. Int. Congr. Polym. Concr. 1 (1982) 360–373.

A. Nanni, "Curing of Roller Compacted Concrete: Strength Development", J. Transp. Eng. 114 (1988) 684–694. doi: 10.1061/(ASCE)0733-947X(1988)114:6(684).

R.J.K. V Vassou, "The Influence of Fibre Reinforce on The Abrasion Resistance of Industrial Concrete Floors", in: 30th Conf. Our World Concr. Struct., 2005: pp. 1–11. http://cipremier.com/100030056.

C.D. Atiş, O. Karahan, "Properties of steel fiber reinforced fly ash concrete", Constr. Build. Mater. 23 (2009) 392–399. doi:10.1016/j.conbuildmat.2007.11.002.

D.W.. Ho, R.. Lewis, "Concrete quality as measured by water sorptivity", Inst. Eng. Civ Eng Trans. CE26 (1984) 306–313. http://trid.trb.org/view.aspx?id=217466.

R. Hooton, M. Nokken, "Water Transport in Brick, Stone and Concrete", Cem. Concr. Aggregates. 25 (2003) 11926. doi:10.1520/CCA10518J.

P. Ramadoss, K. Nagamani, "Tensile Strength and Durability Characteristics of High-Performance Fiber Reinforced Concrete", Arab. J. Sci. Eng. 33 (2008) 307–319.

A.A. Ramezanianpour, M. Esmaeili, S.A. Ghahari, M.H. Najafi, "Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers", Constr. Build. Mater. 44 (2013) 411–418. doi:10.1016/j.conbuildmat.2013.02.076.

IS: 8112, "Ordinary Portland cement, 43 grade-Specification", Bur. Indian Stand. New Delhi. (1989).

IS: 516, "Method of test for strength of concrete", Bur. Indian Stand. New Delhi. (1959).

IS: 5816, "Splitting Tensile Strength of Concrete Method of Test", Bur. Indian Stand. New Delhi. (1999).

ASTM C293-02, "Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading)", Annu. B. ASTM Stand. (2002) 1–3. doi: 10.1520/D1635.

ACI 544.2R-89, "ACI 544.2R-89: Measurement of Properties of Fiber Reinforced Concrete (Reapproved 1999)", Aci. 89 (1999) 12.

H. Cao, "Experimental Investigation on the Static and Impact Behaviors of Basalt Fiber-Reinforced Concrete", Open Civ. Eng. J. 11 (2016) 14–21.

IS: 1237, "Cement Concrete Flooring Tiles - Specification", Bur. Indian Stand. New Delhi. (2012).

ASTM C 1585, "Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-", ASTM Int. (2013) 4–9. doi:10.1520/C1585-13.2.

J. Dils, V. Boel, G. De Schutter, "Influence of cement type and mixing pressure on air content, rheology and mechanical properties of UHPC", Constr. Build. Mater. 41 (2013) 455–463. doi:10.1016/j.conbuildmat.2012.12.050.

A.K. Parviz Soroushian and Jer-Wen Hsu,"Mechanical Properties of Concrete Materials Reinforced With Polypropylene or Polyethylene Fibers", ACI Mater. J. 89 (1992). doi:10.14359/4018.

V.M. Malhotra, G.G. Carette, A. Bilodeau,"Mechanical Properties and Durability of Polypropylene Fibre Reinforced High volume Fly Ash Concrete for Shotcrete Application", ACI Mater. J. 91 (1994) 478–486.

N.I. Fattuhi, B.P. Hughes, "The workability of steel-fiber-reinforced concrete", Mag. Concr. Res. 28 (1976) 157–161.

A. Litvin, "Report to Wire Reinforcement Institute on Properties of Concrete Containing Polypropylene Fibers", Constr. Technol. Lab. (1985).

D.A. Fanella, A.E. Naaman, "Stress-strain Properties of Fiber Reinforced Mortar in Compression", ACI J. 82 (1985) 475–483. doi: 10.14359/10359.

R.F. Zollo, "Collated Fibrillated Polypropylene Fibers In FRC", Publ. Sp - Am. Concr. Inst. (1984) 397–409.

V. Afroughsabet, T. Ozbakkaloglu, "Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers", Constr. Build. Mater. 94 (2015) 73–82. doi:10.1016/j.conbuildmat.2015.06.051.

V. Afroughsabet, L. Biolzi, T. Ozbakkaloglu, "High-performance fiber-reinforced concrete: a review", J. Mater. Sci. 51 (2016) 6517–6551. doi:10.1007/s10853-016-9917-4.

A. Khitab, M.T. Arshad, N. Hussain, K. Tariq, S.A. Ali, S.M.S. Kazmi, M.J. Munir, "Concrete reinforced with 0.1 vol% of different synthetic fibers", Life Sci. J. 10 (2013) 934–939.

R. Bagherzadeh, H.R. Pakravan, A. Sadeghi, M. Latifi, A.A. Merati, "An Investigation on Adding Polypropylene Fibers to Reinforce Lightweight Cement Composites (LWC)", J. Eng. Fiber. Fabr. 7 (2012) 13–21. http://www.jeffjournal.org.

S. Hwang, P.S. Song, B.C. Sheu, "Impact Resistance of Polypropylene Fiber-Reinforced Concrete", Chung Cheng Ling Hsueh Pao/Journal Chung Cheng Inst. Technol. 32 (2003) 33–44.

T. Chu, G.S., "Bentur, Impact loads on fiber reinforced concrete", Int. J. Impact Eng. 27 (1997) 622–631.

G.L. Oyekan, "Impact resistance of fiber-reinforced laterized concrete", in: 26th Conf. Our World Concr. Struct. Singapore, 2001: pp. 27–28.

C.D. Atis, O.N. Celik, "Relation between abrasion resistance and flexural strength of high volume fly ash concrete", Mater. Struct. 35 (2002) 257–260. doi:10.1007/bf02533087.

Atis, C. D., "Abrasion resistance of high volume fly ash concrete", in: Proc., IV Int. Congr. Adv. Civ. Eng. Bizim Buro Press. Gazimagusa, North Cyprus, 2000: p. 1363–1371.


Full Text: PDF

DOI: 10.28991/cej-0309171

Refbacks





Copyright (c) 2018 Niraj Kumar Singh, Baboo Rai

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message