Infrared Thermal Monitoring of Intersection Elements of Urban Road Infrastructure and Road Traffic Via Drone

Iliyan Damyanov, Georgi Mladenov, Durhan Saliev, Rosen Miletiev, Kalin Dimitrov, Vladimir Hristov

Abstract


This paper presents a thermographic analysis of a street junction within an urban road network, focusing on identifying thermal load sources generated by vehicle traffic—an increasingly significant environmental concern for urban populations. The study explores the application of thermographic methods at urban intersections and the creation of thermal maps. These approaches support the advancement of intelligent transport systems, aligning with smart city initiatives aimed at optimizing traffic flow management. Additionally, the findings provide potential for assessing the conditions of both road transport infrastructure and vehicles. By adopting this comprehensive perspective for monitoring urban environments and transportation systems, cities can enhance overall quality of life and public well-being. The results emphasize the value of conducting broad-scope studies, suggesting that combining ground-based and aerial thermal imaging leads to more informed decision-making.

 

Doi: 10.28991/CEJ-2025-011-05-02

Full Text: PDF


Keywords


Monitoring of the Urban Environment; Temperature Load; Thermographic Survey and Research; Thermal Imaging; Transport System Management.

References


Lancet Countdown. (2023). Heat-related Mortality. Lancet Countdown, London, United Kingdom. Available online: https://lancetcountdown.org/explore-our-data/ (accessed on April 2025).

Zhao, Q., Guo, Y., Ye, T., Gasparrini, A., Tong, S., Overcenco, A., Urban, A., Schneider, A., Entezari, A., Vicedo-Cabrera, A. M., Zanobetti, A., Analitis, A., Zeka, A., Tobias, A., Nunes, B., Alahmad, B., Armstrong, B., Forsberg, B., Pan, S.-C., … Li, S. (2021). Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study. The Lancet Planetary Health, 5(7), e415–e425. doi:10.1016/s2542-5196(21)00081-4.

Ballester, J., Quijal-Zamorano, M., Méndez Turrubiates, R. F., Pegenaute, F., Herrmann, F. R., Robine, J. M., Basagaña, X., Tonne, C., Antó, J. M., & Achebak, H. (2023). Heat-related mortality in Europe during the summer of 2022. Nature Medicine, 29(7), 1857–1866. doi:10.1038/s41591-023-02419-z.

Ebi, K. L., Capon, A., Berry, P., Broderick, C., de Dear, R., Havenith, G., Honda, Y., Kovats, R. S., Ma, W., Malik, A., Morris, N. B., Nybo, L., Seneviratne, S. I., Vanos, J., & Jay, O. (2021). Hot weather and heat extremes: health risks. The Lancet, 398(10301), 698–708. doi:10.1016/s0140-6736(21)01208-3.

Batson, A. (2019). Road pavement acceptance during construction, Guide note. Department of Infrastructure Planning and Logistics, Northern Territory Government, Darwin, Australia.

Freeman, R. B., & Grogan, W. P. (1998). Statistical Acceptance Plan for Asphalt Pavement Construction. Defense Technical Information Center, Fort Belvoir, Virginia, United States. doi:10.21236/ada347907.

Department for Transport. (2021). Road Condition Data and Technology Review: Position Paper, Research and analysis. Department for Transport, London, United Kingdom.

Leigh, A., & Neill, C. (2011). Can national infrastructure spending reduce local unemployment? Evidence from an Australian roads program. Economics Letters, 113(2), 150–153. doi:10.1016/j.econlet.2011.05.037.

Jenelius, E., & Mattsson, L. G. (2015). Road network vulnerability analysis: Conceptualization, implementation and application. Computers, Environment and Urban Systems, 49, 136–147. doi:10.1016/j.compenvurbsys.2014.02.003.

Qiang, Q., & Nagurney, A. (2008). A unified network performance measure with importance identification and the ranking of network components. Optimization Letters, 2(1), 127–142. doi:10.1007/s11590-007-0049-2.

Sullivan, J. L., Novak, D. C., Aultman-Hall, L., & Scott, D. M. (2010). Identifying critical road segments and measuring system-wide robustness in transportation networks with isolating links: A link-based capacity-reduction approach. Transportation Research Part A: Policy and Practice, 44(5), 323–336. doi:10.1016/j.tra.2010.02.003.

Taylor, M. A. P., & Susilawati. (2012). Remoteness and accessibility in the vulnerability analysis of regional road networks. Transportation Research Part A: Policy and Practice, 46(5), 761–771. doi:10.1016/j.tra.2012.02.008.

Blom, C. M., & Guthrie, P. M. (2015). Surveying customer perceptions of road infrastructure comfort. Infrastructure Asset Management, 2(4), 173–185. doi:10.1680/jinam.15.00007.

Tarigan, H., Matondang, A. R., Lubis, S., & Sirojuzilam, S. (2021). The Effect of Road Transportation Infrastructure on Freight Transport Mobility and Regional Economy in Indonesia. Journal of Asian Finance, Economics and Business, 8(3), 645–654. doi:10.13106/jafeb.2021.vol8.no3.0645.

Desmet, K., & Henderson, J. V. (2015). The Geography of Development within Countries. Handbook of Regional and Urban Economics, 1457–1517, Elsevier, Amsterdam, Netherland. doi:10.1016/b978-0-444-59531-7.00022-3.

VTPI. (2020). Online TDM Encyclopedia. Victoria Transport Policy Institute, Victoria, Canada. Available online: https://www.vtpi.org/tdm/ (accessed on April 2025).

Mindell, J. S., & Birley, M. (2020). Qualitative health impact assessment. Traffic-Related Air Pollution, 311–337, Elsevier, Amsterdam, Netherland. doi:10.1016/b978-0-12-818122-5.00012-0.

Negev, M., Levine, H., Davidovitch, N., Bhatia, R., & Mindell, J. (2012). Integration of health and environment through health impact assessment: Cases from three continents. Environmental Research, 114, 60–67. doi:10.1016/j.envres.2012.02.003.

Papp, C. R., & Berchi, G. M. (2019). State of the art report and gap analysis in the field of environmentally-friendly transport infrastructure development. Danube Transnational Programme TRANSGREEN Project-WWF Romania, Budapest, Hungary.

Decae, R., Goldenbeld, C., & Hermens, f. (2021). Road safety targets Monitoring report, Version 1.1, May 2021, Reporting period 2000-2020. European Road Safety Observatory, Brussels, Belgium.

World Health Organization (WHO). (2016). Post-crash response Supporting those affected by road traffic crashes. World Health Organization (WHO), Geneva, Switzerland.

European Commission. (2018). Post-impact Care. Directorate General for Transport, European Commission, Brussels, Belgium.

A/RES/74/299. (2020). Resolution adopted by the General Assembly on 31 August 2020. Seventy-fourth Session, Improving Global Road Safety, United Nations, New York, United States.

W.H.O. (2021). Decade of Action for Road Safety 2021-2030. World Health Organization (WHO), Geneva, Switzerland.

Speight, J. G. (2016). Asphalt Chemistry. Asphalt Materials Science and Technology, 253–301, Butterworth-Heinemann, Oxford, United Kingdom. doi:10.1016/b978-0-12-800273-5.00006-4.

Sulyman, M., Sienkiewicz, M., & Haponiuk, J. (2014). Asphalt Pavement Material Improvement: A Review. International Journal of Environmental Science and Development, 5(5), 444–454. doi:10.7763/ijesd.2014.v5.525.

Almeida, A., & Picado-Santos, L. (2022). Asphalt Road Pavements to Address Climate Change Challenges—An Overview. Applied Sciences (Switzerland), 12(24), 12515. doi:10.3390/app122412515.

Krishnan, J. M., & Rajagopal, K. R. (2005). On the mechanical behavior of asphalt. Mechanics of Materials, 37(11), 1085–1100. doi:10.1016/j.mechmat.2004.09.005.

Zhang, C., Tan, Y., Gao, Y., Fu, Y., Li, J., Li, S., & Zhou, X. (2022). Resilience assessment of asphalt pavement rutting under climate change. Transportation Research Part D: Transport and Environment, 109, 103395. doi:10.1016/j.trd.2022.103395.

Gudipudi, P. P., Underwood, B. S., & Zalghout, A. (2017). Impact of climate change on pavement structural performance in the United States. Transportation Research Part D: Transport and Environment, 57, 172–184. doi:10.1016/j.trd.2017.09.022.

Guo, R., Nian, T., & zhou, F. (2020). Analysis of factors that influence anti-rutting performance of asphalt pavement. Construction and Building Materials, 254. doi:10.1016/j.conbuildmat.2020.119237.

Vyas, V., Patil, V. J., Singh, A. P., & Srivastava, A. (2019). Application of infrared thermography for debonding detection in asphalt pavements. Journal of Civil Structural Health Monitoring, 9(3), 325–337. doi:10.1007/s13349-019-00337-8.

Vyas, V., Patil, V. J., Singh, A. P., & Anshuman, A. (2020). Debonding detection in asphalt pavements using infrared thermography. Transportation Research Procedia, 48(2), 3850–3859. doi:10.1016/j.trpro.2020.08.035.

Garg, S., & Misra, S. (2021). Efficiency of NDT techniques to detect voids in grouted post-tensioned concrete ducts. Nondestructive Testing and Evaluation, 36(4), 366-387. doi:10.1080/10589759.2020.1758100.

Vyas, V., & Singh, A. P. (2022). Modeling asphalt pavement condition using artificial neural networks. Materials Today: Proceedings, 62, 1671-1676. doi:10.1016/j.matpr.2022.05.050.

Li, P., Wang, Z., Men, B., Ma, X., Tang, G., & Wang, R. (2023). Use of Multi-Scale Investigation to Evaluate Adhesion Performance of Warm-Mix Polymer-Modified Asphalt. Materials, 16(1), 287. doi:10.3390/ma16010287.

Yun, J., Vigneswaran, S., Lee, M. S., Choi, P., & Lee, S. J. (2023). Effect of Blending and Curing Conditions on the Storage Stability of Rubberized Asphalt Binders. Materials, 16(3), 978. doi:10.3390/ma16030978.

Radziszewski, P., Liphardt, A., Sarnowski, M., Kowalski, K. J., Pokorski, P., Konieczna, K., Król, J. B., Iwański, M., Chomicz-Kowalska, A., Maciejewski, K., Iwański, M. M., & Michalec, M. (2023). Ageing Evaluation of Foamed Polymer Modified Bitumen with Bio-Flux Additive. Materials, 16(6), 2197. doi:10.3390/ma16062167.

Bocci, E., Prosperi, E., Mair, V., & Bocci, M. (2020). Ageing and cooling of hot-mix-asphalt during hauling and paving—a laboratory and site study. Sustainability (Switzerland), 12(20), 1–16. doi:10.3390/su12208612.

Phaltane, P. P. (2016). Effects of Temperature Segregation on the Denisity and Mechanical Properties of Asphalt Mixtures. Master Thesis, Louisiana State University and Agricultural & Mechanical College, Baton Rouge, United States. doi:10.31390/gradschool_theses.4477.

Lavin, P. (2003). Asphalt pavements: a practical guide to design, production and maintenance for engineers and architects. CRC Press, London, United Kingdom. doi:10.1201/9781482267716.

Milad, A. A., Adwan, I., Majeed, S. A., Memon, Z. A., Bilema, M., Omar, H. A., Abdolrasol, M. G. M., Usman, A., & Yusoff, N. I. M. (2021). Development of a Hybrid Machine Learning Model for Asphalt Pavement Temperature Prediction. IEEE Access, 9, 158041–158056. doi:10.1109/access.2021.3129979.

Wang, X., Pan, P., & Li, J. (2023). Real-time measurement on dynamic temperature variation of asphalt pavement using machine learning. Measurement: Journal of the International Measurement Confederation, 207. doi:10.1016/j.measurement.2022.112413.

Aljagoub, D., Na, R., Cheng, C., & Shen, Z. (2022). Performance Evaluation of Uncooled UAV Infrared Camera in Detecting Concrete Delamination. Infrastructures, 7(12), 163. doi:10.3390/infrastructures7120163.

Japan International Cooperation Agency. (2013). Information Collection and Confirmation Survey on Road and Bridge Maintenance Management. Japan International Cooperation Agency, Tokyo, Japan.

Mac, V. H., Huh, J., Doan, N. S., Shin, G., & Lee, B. Y. (2020). Thermography-based deterioration detection in concrete bridge girders strengthened with carbon fiber-reinforced polymer. Sensors (Switzerland), 20(11), 1–19. doi:10.3390/s20113263.

Janků, M., & Stryk, J. (2017). Application of infrared camera to bituminous concrete pavements: Measuring vehicle. IOP Conference Series: Materials Science and Engineering, 236(1), 12104. doi:10.1088/1757-899X/236/1/012104.

Omar, T., & Nehdi, M. L. (2017). Thermal detection of subsurface delaminations in reinforced concrete bridge decks using unmanned aerial vehicle. SP-331: Durability of Concrete Structures Incorporating Conventional and Advanced Materials, 1-14. doi:10.14359/51715590.

Ojeda, J. M. P., Huatangari, L. Q., Calderon, B. A. C., Tineo, J. L. P., Panca, C. Z. A., & Pino, M. E. M. (2024). Estimation of the Physical Progress of Work Using UAV and BIM in Construction Projects. Civil Engineering Journal, 10(2), 362-383. doi:10.28991/CEJ-2024-010-02-02.

Worachairungreung, M., Kulpanich, N., Sae-ngow, P., Thanakunwutthirot, K., Anurak, K., & Hemwan, P. (2024). Classification of Coconut Trees Within Plantations from UAV Images Using Deep Learning with Faster R-CNN and Mask R-CNN. Journal of Human, Earth, and Future, 5(4), 560-573. doi:10.28991/HEF-2024-05-04-02.

Lee, S., Moon, H., Choi, Y., & Yoon, D. K. (2018). Analyzing thermal characteristics of urban streets using a thermal imaging camera: A case study on commercial streets in Seoul, Korea. Sustainability (Switzerland), 10(2), 519. doi:10.3390/su10020519.

Yamazaki, F., Murakoshi, A., & Sekiya, N. (2009). Observation of urban heat island using airborne thermal sensors. 2009 Joint Urban Remote Sensing Event, 1-5. doi:10.1109/URS.2009.5137723.

Dekić, J. P., Mitković, P. B., Dinic Branković, M. M., Igić, M. Z., Dekić, P. S., & Mitković, M. P. (2018). The study of effects of greenery on temperature reduction in urban areas. Thermal Science, 988-1000. doi:10.2298/TSCI170530122D.

Kong, F., Yin, H., James, P., Hutyra, L. R., & He, H. S. (2014). Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China. Landscape and Urban Planning, 128, 35–47. doi:10.1016/j.landurbplan.2014.04.018.

Zhang, Q., Zhou, D., Xu, D., Cheng, J., & Rogora, A. (2022). Influencing factors of the thermal environment of urban green space. Heliyon, 8(11), e11559. doi:10.1016/j.heliyon.2022.e11559.

Weber, N., Haase, D., & Franck, U. (2014). Zooming into temperature conditions in the city of Leipzig: How do urban built and green structures influence earth surface temperatures in the city? Science of the Total Environment, 496, 289–298. doi:10.1016/j.scitotenv.2014.06.144.

Roxon, J., Ulm, F. J., & Pellenq, R. J. M. (2020). Urban heat island impact on state residential energy cost and CO2 emissions in the United States. Urban Climate, 31. doi:10.1016/j.uclim.2019.100546.

Pham Xuan, R., Xiong, Y., Brietzke, A., & Marker, S. (2021). Thermal infrared imaging based facial temperature in comparison to ear temperature during a real-driving scenario. Journal of Thermal Biology, 96. doi:10.1016/j.jtherbio.2020.102806.

Mirones Gómez, B. J. (2021). Thermal comfort in conventional vehicles (ICE) and electric (EV)-Evaluation Methods. Transportation Research Procedia, 58, 662–669. doi:10.1016/j.trpro.2021.11.087.

Afrin, T., Yodo, N., Dey, A., & Aragon, L. G. (2024). Advancements in UAV-Enabled Intelligent Transportation Systems: A Three-Layered Framework and Future Directions. Applied Sciences (Switzerland), 14(20), 9455. doi:10.3390/app14209455.

Bhadoriya, A. S., Vegamoor, V., & Rathinam, S. (2022). Vehicle Detection and Tracking Using Thermal Cameras in Adverse Visibility Conditions. Sensors, 22(12), 4567. doi:10.3390/s22124567.

Tichý, T., Å vorc, D., RůžiÄka, M., & BÄ›linová, Z. (2021). Thermal feature detection of vehicle categories in the urban area. Sustainability (Switzerland), 13(12), 6873. doi:10.3390/su13126873.

Askarzadeh, T., Bridgelall, R., & Tolliver, D. D. (2025). Drones for Road Condition Monitoring: Applications and Benefits. Journal of Transportation Engineering, Part B: Pavements, 151(1), 04024055. doi:10.1061/jpeodx.pveng-1559.

Choi, J. D., & Kim, M. Y. (2023). A sensor fusion system with thermal infrared camera and LiDAR for autonomous vehicles and deep learning based object detection. ICT Express, 9(2), 222–227. doi:10.1016/j.icte.2021.12.016.

Yoon, S., & Cho, J. (2022). Deep Multimodal Detection in Reduced Visibility Using Thermal Depth Estimation for Autonomous Driving. Sensors, 22(14), 5084. doi:10.3390/s22145084.

Zhang, Y., Carballo, A., Yang, H., & Takeda, K. (2023). Perception and sensing for autonomous vehicles under adverse weather conditions: A survey. ISPRS Journal of Photogrammetry and Remote Sensing, 196, 146–177. doi:10.1016/j.isprsjprs.2022.12.021.

DJI (2025). Support for Mavic 2 Enterprise Advanced. DJI, Shenzhen, China. Available online: https://enterprise.dji.com/mavic-2-enterprise-advanced (accessed on April 2025).

Saliev, D. N., & Damyanov, I. S. (2024). Traffic flow density study at traffic light junction. AIP Conference Proceedings, 3078(1), 50004. doi:10.1063/5.0208304.

Saliev, D. N., & Damyanov, I. S. (2022). Vehicles acceleration rate study for intergreen time of a signal cycle compute. AIP Conference Proceedings, 2449(1), 50007. doi:10.1063/5.0091882.

Chen, W., Wei, K., Wei, J., Han, W., Zhang, X., Hu, G., Wei, S., Niu, L., Chen, K., Fu, Z., Xu, X., Xu, B., & Cui, T. (2022). Research on the Road Performance of Asphalt Mixtures Based on Infrared Thermography. Materials, 15(12), 4309. doi:10.3390/ma15124309.

The Engineering ToolBox. (2003). Emissivity Coefficients of Common Materials: Data & Reference Guide. The Engineering ToolBox. Available online: https://www.engineeringtoolbox.com/emissivity-coefficients-d_447.html (accessed on April 2025).

Palmer, J. M., & Grant, B. G. (2009). The art of radiometry. The international society for optics and photonics SPIE, Bellingham, United States. doi:10.1117/3.798237.

Sapritsky, V., & Prokhorov, A. (2020). Blackbody Radiometry: Volume 1: Fundamentals. Springer Nature, Cham, Switzerland. doi:10.1007/978-3-030-57789-6.

Wolfe, W. L. (1998). Introduction to radiometry (Vol. 29). SPIE Press, Bellingham, United States. doi:10.1117/3.287476.

Parr, A. C., Datla, R., & Gardner, J. (2005). Optical Radiometry (Volume 41). Elsevier, Amsterdam, Netherlands.

Howell, J. R., Mengüç, M. P., Daun, K., & Siegel, R. (2020). Thermal radiation heat transfer. CRC press, Boca Raton, United States. doi:10.1201/9780429327308.

Liu, F., Liu, J., & Wang, L. (2022). Deep learning and infrared thermography for asphalt pavement crack severity classification. Automation in Construction, 140, 0926–5805. doi:10.1016/j.autcon.2022.104383.

Kulkarni, N. N., Raisi, K., Valente, N. A., Benoit, J., Yu, T., & Sabato, A. (2023). Deep learning augmented infrared thermography for unmanned aerial vehicles structural health monitoring of roadways. Automation in Construction, 148. doi:10.1016/j.autcon.2023.104784.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-05-02

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Iliyan Damyanov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message