Optimized Feature Selection for Predicting the Number of Casualties in Traffic Crashes
Abstract
Doi: 10.28991/CEJ-2025-011-04-01
Full Text: PDF
Keywords
References
W.H.O. (2023). Road traffic injuries. World Health Organization (W.H.O.), Genève, Switzerland. Available online: https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries (accessed on March 2025).
Dalal, K., Lin, Z., Gifford, M., & Svanström, L. (2013). Economics of global burden of road traffic injuries and their relationship with health system variables. International Journal of Preventive Medicine, 4(12), 1442–1450.
Dimitriou, D., & Poufinas, T. (2016). Cost of Road Accident Fatalities to the Economy. International Advances in Economic Research, 22(4), 433–445. doi:10.1007/s11294-016-9601-0.
Blincoe, L., Miller, T. R., Wang, J. S., Swedler, D., Coughlin, T., Lawrence, B., ... & Dingus, T. (2022). The economic and societal impact of motor vehicle crashes, National Highway Traffic Safety Administration, No. DOT HS 813 403.
Rahmati, F., Doosti, M., & Bahreini, M. (2018). The Cost Analysis of Patients with Traffic Traumatic Injuries Presenting to Emergency Department; a Cross-sectional Study. Advanced Journal of Emergency Medicine, 3(1), e2.
Kavosi, Z., Jafari, A., Hatam, N., & Enaami, M. (2015). The Economic Burden of Traumatic Brain Injury Due to Fatal Traffic Accidents in Shiraz Shahid Rajaei Trauma Hospital, Shiraz, Iran. Archives of Trauma Research, 4(1), 22594. doi:10.5812/atr.22594.
Sánchez-Vallejo, P. G., Pérez-Núñez, R., & Heredia-Pi, I. (2015). Economic cost of disability caused by traffic injuries in Mexico during 2012. Cad. Public Health, Rio de Janeiro, 31(4), 755–766. doi:10.1590/0102-311X00020314
Abuzwidah, M., & Abdel-Aty, M. (2024). Assessing the impact of express lanes on traffic safety of freeways. Accident Analysis and Prevention, 207, 107718. doi:10.1016/j.aap.2024.107718.
Elawady, A., Khetrish, A., & Abuzwidah, M. (2020). Driver behaviors’ impacts on traffic safety at the intersections. 2020 Advances in Science and Engineering Technology International Conferences, 1–6. doi:10.1109/ASET48392.2020.9118291.
Jamal, A., Zahid, M., Tauhidur Rahman, M., Al-Ahmadi, H. M., Almoshaogeh, M., Farooq, D., & Ahmad, M. (2021). Injury severity prediction of traffic crashes with ensemble machine learning techniques: a comparative study. International Journal of Injury Control and Safety Promotion, 28(4), 408–427. doi:10.1080/17457300.2021.1928233.
Rajee, A., Satu, M. S., Abedin, M. Z., Ali, K. M. A., Aloteibi, S., & Moni, M. A. Weighted Fusion-Based Feature Selection (WFFS) for Enhanced Traffic Accident Analysis. Knowledge-Based Systems, 311, 113089.
Shi, X., Wong, Y. D., Li, M. Z. F., Palanisamy, C., & Chai, C. (2019). A feature learning approach based on XGBoost for driving assessment and risk prediction. Accident Analysis and Prevention, 129, 170–179. doi:10.1016/j.aap.2019.05.005.
Shangguan, Q., Wang, J., Lei, C., Fu, T., Fang, S., & Fu, L. (2025). Modelling the impact of risky cut-in and cut-out manoeuvers on traffic platooning safety with predictability and explainability. Transportmetrica A: Transport Science. doi:10.1080/23249935.2025.2473628.
Elawady, A., Alotaibi, E., Mostafa, O., & Abuzwidah, M. (2022). Predicting Number of Casualties during Accidents Using Machine Learning. 2022 Advances in Science and Engineering Technology International Conferences, ASET 2022, 1–5. doi:10.1109/ASET53988.2022.9734994.
Ahmed, S., Hossain, M. A., Ray, S. K., Bhuiyan, M. M. I., & Sabuj, S. R. (2023). A study on road accident prediction and contributing factors using explainable machine learning models: analysis and performance. Transportation Research Interdisciplinary Perspectives, 19, 100814. doi:10.1016/j.trip.2023.100814.
Khan, A. A., & Hussain, J. (2024). Utilizing GIS and Machine Learning for Traffic Accident Prediction in Urban Environment. Civil Engineering Journal (Iran), 10(6), 1922–1935. doi:10.28991/CEJ-2024-010-06-013.
Alnaqbi, A., Zeiada, W., Al-Khateeb, G. G., & Abuzwidah, M. (2024). Machine Learning Modeling of Wheel and Non-Wheel Path Longitudinal Cracking. Buildings, 14(3), 709. doi:10.3390/buildings14030709.
Elawady, A., Abuzwidah, M., Barakat, S., & Lee, J. (2023). Predicting Traffic Accidents Severity Using Multiple Analytical Techniques. Advances in Science and Technology, 129, 215–228. doi:10.4028/p-I7bQ7V.
Çeven, S., & Albayrak, A. (2024). Traffic accident severity prediction with ensemble learning methods. Computers and Electrical Engineering, 114, 109101. doi:10.1016/j.compeleceng.2024.109101.
Ma, Z., Mei, G., & Cuomo, S. (2021). An analytic framework using deep learning for prediction of traffic accident injury severity based on contributing factors. Accident Analysis and Prevention, 160, 106322. doi:10.1016/j.aap.2021.106322.
Yang, Z., Zhang, W., & Feng, J. (2022). Predicting multiple types of traffic accident severity with explanations: A multi-task deep learning framework. Safety Science, 146, 105522. doi:10.1016/j.ssci.2021.105522.
Alnaqbi, A. J., Zeiada, W., Al-Khateeb, G., Abttan, A., & Abuzwidah, M. (2024). Predictive models for flexible pavement fatigue cracking based on machine learning. Transportation Engineering, 16, 100243. doi:10.1016/j.treng.2024.100243.
Abuzwidah, M., Elawady, A., Wang, L., & Zeiada, W. (2024). Assessing the Impact of Adverse Weather on Performance and Safety of Connected and Autonomous Vehicles. Civil Engineering Journal (Iran), 10(9), 3070–3089. doi:10.28991/CEJ-2024-010-09-019.
Sejdiu, L., Tollazzi, T., Shala, F., & Demolli, H. (2024). Analysis of Traffic Safety Factors and Their Impact Using Machine Learning Algorithms. Civil Engineering Journal (Iran), 10(9), 2859–2869. doi:10.28991/CEJ-2024-010-09-06.
Mahmoud, N., Abdel-Aty, M., Cai, Q., & Abuzwidah, M. (2022). Analyzing the Difference Between Operating Speed and Target Speed Using Mixed-Effect Ordered Logit Model. Transportation Research Record, 2676(9), 596–607. doi:10.1177/03611981221088197.
Ruangkanjanases, A., Sivarak, O., Weng, Z. J., Khan, A., & Chen, S. C. (2024). Using multilayer perceptron neural network to assess the critical factors of traffic accidents. HighTech and Innovation Journal, 5(1), 157-169. doi:10.28991/HIJ-2024-05-01-012.
Guido, G., Shaffiee Haghshenas, S., Shaffiee Haghshenas, S., Vitale, A., & Astarita, V. (2022). Application of Feature Selection Approaches for Prioritizing and Evaluating the Potential Factors for Safety Management in Transportation Systems. Computers, 11(10). doi:10.3390/computers11100145.
Sobhana, M., Mendu, G. S. S. V., Vemulapalli, N., & Chintakayala, K. K. (2024). Optimized feature selection approaches for accident classification to enhance road safety. IAES International Journal of Artificial Intelligence, 13(3), 3283–3290. doi:10.11591/ijai.v13.i3.pp3283-3290.
Zhang, S., Khattak, A., Matara, C. M., Hussain, A., & Farooq, A. (2022). Hybrid feature selection-based machine learning Classification system for the prediction of injury severity in single and multiple-vehicle accidents. PLoS ONE, 17(2 February), 262941. doi:10.1371/journal.pone.0262941.
Wang, S., Chen, Y., Huang, J., Ma, J., & Lu, Y. (2019). Traffic crash forensic analysis based on univariate feature selection. CICTP 2019: Transportation in China - Connecting the World - Proceedings of the 19th COTA International Conference of Transportation Professionals, 5458–5470. doi:10.1061/9780784482292.470.
Najah, A., Abuzwidah, M., & Khalil, D. (2020). The impact of the rear seat belt use on traffic safety in the UAE. 2020 Advances in Science and Engineering Technology International Conferences, 9118388. doi:10.1109/ASET48392.2020.9118388.
Wei, J. T., Wu, H. H., & Kou, K. Y. (2011). Using feature selection to reduce the complexity in analyzing the injury severity of traffic accidents. Proceedings - 2011 International Joint Conference on Service Sciences, 329–333. doi:10.1109/IJCSS.2011.73.
Obasi, I. C., & Benson, C. (2023). Evaluating the effectiveness of machine learning techniques in forecasting the severity of traffic accidents. Heliyon, 9(8), e18812. doi:10.1016/j.heliyon.2023.e18812.
Khetrish, A., Abuzwidah, M., & Barakat, S. (2023). Modeling Crash Frequency Using Crash and Geometric Data at Freeways. Advances in Science and Technology, 129, 207–213. doi:10.4028/p-Hq3Aty.
DOI: 10.28991/CEJ-2025-011-04-01
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Muamer Abuzwidah, Ahmed Elawady, Jaeyoung Jay Lee, Ghazi G Al-Khateeb, Salah Haridy, Waleed Zeiada

This work is licensed under a Creative Commons Attribution 4.0 International License.