Performance Optimization of Masonry Mortar with Marble Dust, Spent Coffee Grounds, and Peanut Shell Ash

Alexey N. Beskopylny, Mohammad Hematibahar, Komeil Momeni, Sergei A. Stel'makh, Evgenii M. Shcherban'

Abstract


This research focused on the inclusion of spent coffee grounds (SCGs) and peanut shell ash (PSH) as variable additives and marble dust as a constant additive to cement materials to substitute aggregates and determine the effect of each variable on the properties of cement materials. To determine the influence of PSH and SCGs, these were added to mortar in 0.1, 0.2, and 0.3% proportions and were combined with microsilica and superplasticizer. To analyze the results, the compressive and flexural strengths during three-point bending were investigated. The chemical composition and microstructure of the mortar mix were investigated using Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray (EDX) spectroscopy. The results showed that incorporating microsilica into the mortar mix increased the compressive strength to over 35.42 MPa compared to the control sample's 33.4 MPa. Adding 0.1% and 0.3% of SCGs and PSH improved the compressive strength of the mortar mix to over 39.48 and 38.09 MPa, respectively. Including 0.2% SCGs and 0.1% PSH increased the flexural strength to over 4.52 and 6.0 MPa, respectively. The SEM and EDX results showed that adding 0.3% SCGs slowed down the formation of calcium silicate hydrates (C-S-H), consequently slowing down the hydration processes, and the strength gain was slower compared to microsilica. The addition of 0.3 PSH stimulated the formation of C-S-H, additionally supplying the cement matrix with such elements as Si and Al. Overall, adding SCGs and PSH has a positive effect on the mechanical and chemical properties of the mortar mix, although adding PSH is more beneficial than adding SCGs.

 

Doi: 10.28991/CEJ-2025-011-03-09

Full Text: PDF


Keywords


Cement; Mortar; Scanning Electron Microscope (SEM); Energy-Dispersive X-Ray; Spent Coffee Grounds; Peanut Shell; Compressive Strength; Flexural Strength.

References


Antipas, I. R., & Dyachenko, A. G. (2022). Using the Finite Element Method to Simulate a Carbon Fiber Reinforced Polymer Pressure Vessel. Advanced Engineering Research, 22(2), 107–115. doi:10.23947/2687-1653-2022-22-2-107-115.

Morgun, V. N. (2023). About Dynamics of Improving the Foam Concrete Technological and Operational Properties upon Disperse Reinforcement with Polypropylene Fibers. Modern Trends in Construction, Urban and Territorial Planning, 2(4), 69–76. doi:10.23947/2949-1835-2023-2-4-69-76.

Chiadighikaobi, P. C., Hasanzadeh, A., Hematibahar, M., Kharun, M., Mousavi, M. S., Stashevskaya, N. A., & Adegoke, M. A. (2024). Evaluation of the mechanical behavior of high-performance concrete (HPC) reinforced with 3D-Printed trusses. Results in Engineering, 22. doi:10.1016/j.rineng.2024.102058.

Chiadighikaobi, P. C., Hematibahar, M., Kharun, M., Stashevskaya, N. A., & Camara, K. (2024). Predicting mechanical properties of self-healing concrete with Trichoderma Reesei Fungus using machine learning. Cogent Engineering, 11(1), 2307193. doi:10.1080/23311916.2024.2307193.

Hematibahar, M., Hasanzadeh, A., Kharun, M., Beskopylny, A. N., Stel’makh, S. A., & Shcherban’, E. M. (2024). The Influence of Three-Dimensionally Printed Polymer Materials as Trusses and Shell Structures on the Mechanical Properties and Load-Bearing Capacity of Reinforced Concrete. Materials, 17(14), 3413. doi:10.3390/ma17143413.

Stel’makh, S. A., Beskopylny, A. N., Shcherban’, E. M., Mavzolevskii, D. V., Drukarenko, S. P., Chernil’nik, A. A., Elshaeva, D. M., & Shilov, A. A. (2024). Influence of corn cob ash additive on the structure and properties of cement concrete. Construction Materials and Products, 7(3), 2. doi:10.58224/2618-7183-2024-7-3-2.

Pan, J., Feng, K., Chen, W., Xing, W., & Wang, Y. (2023). Carrot extract as bio-admixture for performance enhancement of tunnel lining concrete. Journal of Building Engineering, 75, 107036. doi:10.1016/j.jobe.2023.107036.

Hakeem, I. Y., Amin, M., Zeyad, A. M., Tayeh, B. A., Maglad, A. M., & Agwa, I. S. (2022). Effects of nano sized sesame stalk and rice straw ashes on high-strength concrete properties. Journal of Cleaner Production, 370, 133542. doi:10.1016/j.jclepro.2022.133542.

Shao, L., Ding, Z., Wang, S., Pan, K., & Hu, C. (2023). Effect of Organic Matter Components on the Mechanical Properties of Cemented Soil. Materials, 16(17), 5889. doi:10.3390/ma16175889.

D’Eusanio, V., Bertacchini, L., Marchetti, A., Mariani, M., Pastorelli, S., Silvestri, M., & Tassi, L. (2023, June). Rosaceae Nut-Shells as Sustainable Aggregate for Potential Use in Non-Structural Lightweight Concrete. Waste, 1(2), 549-568. doi:10.3390/waste1020033.

Liu, D., Zhang, B., Yang, Y., Xu, W., Ding, Y., & Xia, Z. (2018). Effect of Organic Material Type and Proportion on the Physical and Mechanical Properties of Vegetation-Concrete. Advances in Materials Science and Engineering, 2018. doi:10.1155/2018/3608750.

Siddique, R. (2012). Utilization of wood ash in concrete manufacturing. Resources, Conservation and Recycling, 67, 27–33. doi:10.1016/j.resconrec.2012.07.004.

Traore, Y. B., Messan, A., Hannawi, K., Gerard, J., Prince, W., & Tsobnang, F. (2018). Effect of oil palm shell treatment on the physical and mechanical properties of lightweight concrete. Construction and Building Materials, 161, 452–460. doi:10.1016/j.conbuildmat.2017.11.155.

Zheng, W., Phoungthong, K., Lü, F., Shao, L. M., & He, P. J. (2013). Evaluation of a classification method for biodegradable solid wastes using anaerobic degradation parameters. Waste Management, 33(12), 2632–2640. doi:10.1016/j.wasman.2013.08.015.

Bhatt, S. M., & Shilpa, S. (2014). Bioethanol production from economical agro waste (groundnut shell) in SSF mode. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5(6), 1210–1218.

Duc, P. A., Dharanipriya, P., Velmurugan, B. K., & Shanmugavadivu, M. (2019). Groundnut shell -a beneficial bio-waste. Biocatalysis and Agricultural Biotechnology, 20, 101206. doi:10.1016/j.bcab.2019.101206.

Ding, M., Satija, A., Bhupathiraju, S. N., Hu, Y., Sun, Q., Han, J., Lopez-Garcia, E., Willett, W., Van Dam, R. M., & Hu, F. B. (2015). Association of coffee consumption with total and cause-specific mortality in 3 large prospective cohorts. Circulation, 132(24), 2305–2315. doi:10.1161/CIRCULATIONAHA.115.017341.

Murthy, P. S., & Naidu, M. M. (2012). Recovery of Phenolic Antioxidants and Functional Compounds from Coffee Industry By-Products. Food and Bioprocess Technology, 5(3), 897–903. doi:10.1007/s11947-010-0363-z.

Roychand, R., Kilmartin-Lynch, S., Saberian, M., Li, J., Zhang, G., & Li, C. Q. (2023). Transforming spent coffee grounds into a valuable resource for the enhancement of concrete strength. Journal of Cleaner Production, 419, 138205. doi:10.1016/j.jclepro.2023.138205.

Na, S., Lee, S., & Youn, S. (2021). Experiment on activated carbon manufactured from waste coffee grounds on the compressive strength of cement mortars. Symmetry, 13(4), 619. doi:10.3390/sym13040619.

Mohamed, G., & Djamila, B. (2018). Properties of dune sand concrete containing coffee waste. MATEC Web of Conferences, 149, 01039. doi:10.1051/matecconf/201814901039.

Horma, O., Channouf, S., El Hammouti, A., El Hassani, S., Miri, H., Moussaoui, M. A., & Mezrhab, A. (2024). Enhancing concrete sustainability using crushed peanut shells: An analysis of thermophysical properties, durability, and application potential in construction. Journal of Building Engineering, 90. doi:10.1016/j.jobe.2024.109434.

Sani, J. E., Goddey, O. A., Kevin, O. K., & Anthony, R. (2023). Durability of concrete made with groundnut shell ash as cement replacement. Materials Today: Proceedings, 86, 145–149. doi:10.1016/j.matpr.2023.05.218.

Usman, J., Yahaya, N., & Mohammed Mazizah, E. (2019). Influence of groundnut shell ash on the properties of cement pastes. IOP Conference Series: Materials Science and Engineering, 601(1), 12015. doi:10.1088/1757-899X/601/1/012015.

Shcherban’, E. M., Stel’makh, S. A., Beskopylny, A. N., Mailyan, L. R., Meskhi, B., Chernil’nik, A., El’shaeva, D., Pogrebnyak, A., & Yaschenko, R. (2024). Influence of Sunflower Seed Husks Ash on the Structure Formation and Properties of Cement Concrete. Civil Engineering Journal (Iran), 10(5), 1475–1493. doi:10.28991/CEJ-2024-010-05-08.

Afzal Basha, S., & Shaikh, F. U. A. (2023). Suitability of marble powders in production of high strength concrete. Low-Carbon Materials and Green Construction, 1(1), 27. doi:10.1007/s44242-023-00029-z.

Shooshpasha, I., Hasanzadeh, A., & Kharun, M. (2020). Effect of silica fume on the ultrasonic pulse velocity of cemented sand. Journal of Physics: Conference Series, 1687(1), 012017. doi:10.1088/1742-6596/1687/1/012017.

Shooshpasha, I., Hasanzadeh, A., & Kharun, M. (2019). The influence of micro silica on the compaction properties of cemented sand. IOP Conference Series: Materials Science and Engineering, 675(1), 12002. doi:10.1088/1757-899X/675/1/012002.

Pereira, P., Evangelista, L., & De Brito, J. (2012). The effect of superplasticizers on the mechanical performance of concrete made with fine recycled concrete aggregates. Cement and Concrete Composites, 34(9), 1044–1052. doi:10.1016/j.cemconcomp.2012.06.009.

Puertas, F., Santos, H., Palacios, M., & Martínez-Ramírez, S. (2005). Polycarboxylate superplasticiser admixtures: effect on hydration, microstructure and rheological behaviour in cement pastes. Advances in Cement Research, 17(2), 77-89. doi:10.1680/adcr.17.2.77.65044.

Alsharari, F. (2025). Utilization of industrial, agricultural, and construction waste in cementitious composites: A comprehensive review of their impact on concrete properties and sustainable construction practices. Materials Today Sustainability, 29, 101080. doi:10.1016/j.mtsust.2025.101080.

Ünal, M. T., Hashim, H., Gökçe, H. S., Ayough, P., Köksal, F., El-Shafie, A., & Salman, A. M. (2024). Physical and mechanical properties of pre-treated plant-based lightweight aggregate concretes: A review. Construction and Building Materials, 444, 137728. doi:10.1016/j.conbuildmat.2024.137728.

Turk, O., Yehia, S., Abdelfatah, A., & Elchalakani, M. (2024). Sustainable concrete production: The potential of utilizing recycled waste materials. Journal of Building Engineering, 98, 111467. doi:10.1016/j.jobe.2024.111467.

Haddadian, A., Johnson Alengaram, U., Ayough, P., Mo, K. H., & Mahmoud Alnahhal, A. (2023). Inherent characteristics of agro and industrial By-Products based lightweight concrete – A comprehensive review. Construction and Building Materials, 397, 132298. doi:10.1016/j.conbuildmat.2023.132298.

GB/T 17671-1999. (1999), Method of Testing Cements-Determination of Strength. National Standards of the People's Republic of China, Beijing, China.

ASTM C109/C109M-20. (2020). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, Pennsylvania, United States. doi:10.1520/C0109_C0109M-20.

Haastrup, S., Bødker, M. S., Hansen, S. R., Yu, D., & Yue, Y. (2018). Impact of amorphous micro silica on the C-S-H phase formation in porous calcium silicates. Journal of Non-Crystalline Solids, 481, 556–561. doi:10.1016/j.jnoncrysol.2017.11.051.

Yee, J. J., Khong, S. C., Tee, K. F., Jolius, G., & Chin, S. C. (2024). Spent coffee grounds enhanced compressive strength of cement mortar: an optimization study. Discover Applied Sciences, 6(7), 379. doi:10.1007/s42452-024-06077-9.

Lee, J., Kim, J., & Lee, S. (2023). Study of Recycled Spent Coffee Grounds as Aggregates in Cementitious Materials. Recent Progress in Materials, 5(1), 1–23. doi:10.21926/rpm.2301007.

Gwarah, L. S., Akatah, B. M., Onungwe, I., & Akpan, P. P. (2019). Partial Replacement of Ordinary Portland Cement with Sawdust Ash in Concrete. Current Journal of Applied Science and Technology, 4, 1–7. doi:10.9734/cjast/2019/v32i630036.

Ikumapayi, C. M., Arum, C., & Alaneme, K. K. (2021). Reactivity and hydration behavior in groundnut shell ash based pozzolanic concrete. Materials Today: Proceedings, 38, 508–513. doi:10.1016/j.matpr.2020.02.385.

Buari, T. A., Ademola, S. A., & Ayegbokiki, S. T. (2013). Characteristics Strength of groundnut shell ash (GSA) and Ordinary Portland cement (OPC) blended Concrete in Nigeria. IOSR Journal of Engineering, 3(7), 1-7. doi:10.9790/3021-03760107.

Shahid, K. A., Ganesh, V., & Ghazali, N. (2024). The Incorporation of Spent Coffee Grounds as an Additive in Cement Ventilation Blocks. The Open Civil Engineering Journal, 18(1), 1-12. doi:10.2174/0118741495286280240206073611.

Le, T. T., Park, S. S., Lee, J. C., & Lee, D. E. (2021). Strength characteristics of spent coffee grounds and oyster shells cemented with GGBS-based alkaline-activated materials. Construction and Building Materials, 267, 120986. doi:10.1016/j.conbuildmat.2020.120986.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-03-09

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Alexey Beskopylny

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message