Influence of Bacillus Subtilis Bacteria on Strength and Durability of Concrete with Silica Fume

Deya Qtiashat, Mahmoud Al-Khazaleh, P. Krishna Kumar, Ali Alqatawna, Islam A. Alshafei

Abstract


This study investigates the influence of Bacillus subtilis bacteria on the strength and durability properties of M30 concrete with and without silica fume. The experimental study was conducted on four concrete mix series: conventional concrete (B1), conventional concrete with silica fume (B2), bacterial concrete without any admixtures (B3), and bacterial concrete with silica fume (B4). Silica fume was incorporated at replacement levels of 5% and 10% by weight of cement for the B2 and B4 mix series to evaluate its effect on bacterial activity and concrete performance. The study measured compressive strength, split tensile strength, and water absorption to assess mechanical and durability properties. Results reveal that bacterial concrete (B3 and B4) exhibits improved strength and durability compared to conventional concrete (B1 and B2). Furthermore, silica fume enhances the performance of bacterial concrete due to its pozzolanic action, which refines the microstructure and provides additional nucleation sites for calcium carbonate precipitation by Bacillus subtilis. Among all mixes, B4 with 10% silica fume achieved the highest strength and durability, demonstrating the synergistic effect of bacteria and silica fume. This research highlights the potential of bacterial concrete with silica fume as an innovative material for sustainable construction, offering improved mechanical performance and reduced permeability.

 

Doi: 10.28991/CEJ-2025-011-05-013

Full Text: PDF


Keywords


Bacillus Subtilis, Bacterial Concrete; Silica Fume; Strength Properties; Durability; Sustainable Construction.

References


Chahal, N., Siddique, R., & Rajor, A. (2012). Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete. Construction and Building Materials, 28(1), 351–356. doi:10.1016/j.conbuildmat.2011.07.042.

Ghosh, P., Mandal, S., Chattopadhyay, B. D., & Pal, S. (2005). Use of microorganism to improve the strength of cement mortar. Cement and Concrete Research, 35(10), 1980–1983. doi:10.1016/j.cemconres.2005.03.005.

Ramachandran, S. K., Ramakrishnan, V., & Bang, S. S. (2001). Remediation of concrete using micro-organisms. ACI Materials Journal, 98(1), 3–9. doi:10.14359/10154.

Van Tittelboom, K., De Belie, N., De Muynck, W., & Verstraete, W. (2010). Use of bacteria to repair cracks in concrete. Cement and Concrete Research, 40(1), 157–166. doi:10.1016/j.cemconres.2009.08.025.

Jonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O., & Schlangen, E. (2010). Application of bacteria as self-healing agent for the development of sustainable concrete. Ecological Engineering, 36(2), 230–235. doi:10.1016/j.ecoleng.2008.12.036.

Zheng, W., Li, Y., Wei, H., Gao, G., Zhang, D., & Jiang, Z. (2020). Rapidly self-healing, magnetically controllable, stretchable, smart, moldable nanoparticle composite gel. New Journal of Chemistry, 44(25), 10586–10591. doi:10.1039/c9nj05885k.

Shah, K. W., Huseien, G. F., & Xiong, T. (2020). Functional nanomaterials and their applications toward smart and green buildings. New Materials in Civil Engineering, 395–433. doi:10.1016/b978-0-12-818961-0.00011-9.

Kumar, P. K., & Chinnaraju, K. (2022). Utilization potentials of a nano bio-carbonate filler to mitigate alkali-aggregate reactivity of glass powder–foamed concrete. Canadian Journal of Civil Engineering, 49(10), 1569–1581. doi:10.1139/cjce-2022-0122.

Wang, H., Zhang, A., Shi, F., Liu, J., Cao, P., Du, T., & Gu, H. (2020). Development of relationships between permeability coefficient and electrical and thermal conductivity of recycled aggregates permeable cement concrete. Construction and Building Materials, 254, 119247. doi:10.1016/j.conbuildmat.2020.119247.

Gökçe, H. S., Hatungimana, D., & Ramyar, K. (2019). Effect of fly ash and silica fume on hardened properties of foam concrete. Construction and Building Materials, 194, 1–11. doi:10.1016/j.conbuildmat.2018.11.036.

Anastasiou, E., Lorentz, K. O., Stein, G. J., & Mitchell, P. D. (2014). Prehistoric schistosomiasis parasite found in the Middle East. The Lancet Infectious Diseases, 14(7), 553–554. doi:10.1016/S1473-3099(14)70794-7.

Madhan Kumar, M., Vijaya Ganapathy, D., Subathra Devi, V., & Iswarya, N. (2019). Experimental Investigation on Fibre Reinforced Bacterial Concrete. Materials Today: Proceedings, 22, 2779–2790. doi:10.1016/j.matpr.2020.03.409.

Nugroho, S. A., Wardani, S. R., Muntohar, A. S., & Satibi, S. (2024). Effect of Coal Combustion Waste on Cement-Treated Clay. Civil Engineering Journal, 10(11), 3603-3612. doi:10.28991/CEJ-2024-010-11-010.

Gupta, S., Kua, H. W., & Pang, S. D. (2020). Effect of biochar on mechanical and permeability properties of concrete exposed to elevated temperature. Construction and Building Materials, 234, 117338. doi:10.1016/j.conbuildmat.2019.117338.

Prasad, C. V. S. R., & Lakshmi, T. V. S. V. (2020). Experimental investigation on bacterial concrete strength with Bacillus subtilis and crushed stone dust aggregate based on ultrasonic pulse velocity. Materials Today: Proceedings, 27, 1111–1117. doi:10.1016/j.matpr.2020.01.478.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-05-013

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Deya Qtiashat, Mahmoud Al Khazaleh, Krishna Kumar P, Islam A. ALSHAFEI

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message