Hydraulic Conditions Created by Passing Flow Through and Over a Combined Weir
Abstract
Â
Doi: 10.28991/CEJ-2025-011-05-016
Full Text: PDF
Keywords
References
Hager, W. H., & Schwalt, M. (1994). Broad-Crested Weir. Journal of Irrigation and Drainage Engineering, 120(1), 13–26. doi:10.1061/(asce)0733-9437(1994)120:1(13).
Tracy, H. J. (1957). Discharge characteristics of broad-crested weirs (Volume 397). US Department of the Interior, Geological Survey, Reston, United States.
Moss, W. D. (1972). Flow separation at the upstream edge of a square-edged broad-crested weir. Journal of Fluid Mechanics, 52(2), 307–320. doi:10.1017/S0022112072001430.
Salmasi, F., Poorescandar, S., Dalir, A. H., & Zadeh, D. F. (2011). Discharge relations for rectangular broad-crested weirs. Tarim Bilimleri Dergisi, 17(4), 324–336. doi:10.1501/tarimbil_0000001184.
Al-Hashimi, S. A., Madhloom, H. M., & Nahi, T. N. (2017). Experimental and numerical simulation of flow over broad crested weir and stepped weir using different turbulence models. Journal of Engineering and Sustainable Development, 21(2), 28-45.
Jiang, L., Diao, M., Sun, H., & Ren, Y. (2018). Numerical modeling of flow over a rectangular broad-crested weir with a sloped upstream face. Water (Switzerland), 10(11), 1663. doi:10.3390/w10111663.
Zhuk, V., Vovk, L., Popadiuk, I., & Matlai, I. (2021). Discharge coefficient of rectangular broad-crested weirs in narrow channels with high relative length of the threshold. Ecological Engineering and Environmental Technology, 22(6), 11–16. doi:10.12912/27197050/141877.
Nouri, M., Sihag, P., Kisi, O., Hemmati, M., Shahid, S., & Adnan, R. M. (2023). Prediction of the Discharge Coefficient in Compound Broad-Crested-Weir Gate by Supervised Data Mining Techniques. Sustainability (Switzerland), 15(1), 433. doi:10.3390/su15010433.
Djunur, L. H., Pallu, M. S., Karamma, R., & Bakri, B. (2024). Effect of Porous Rectangular Type Baffle Block Angle on Hydraulic Jump Downstream of Spillway. Civil Engineering Journal, 10(10), 3173-3193. doi:10.28991/CEJ-2024-010-10-04.
Hadano, K., Tatara, K., Nagano, H., & Muraoka, K. (2023). Evaluation of the Upstream Water Level of the Flow Over Finite-Length Weirs with Rectangular Cross-Section in the Flow Direction. Journal of Japan Society of Civil Engineers, 11(1), 23–00138. doi:10.2208/journalofjsce.23-00138.
Alhamid, A. A., Negm, A. A. M., & Al-Brahim, A. M. (1997). Discharge Equation for Proposed Self-cleaning Device. Journal of King Saud University - Engineering Sciences, 9(1), 13–23. doi:10.1016/S1018-3639(18)30664-0.
Mohamed, H. I. (2010). Flow over Gabion Weirs. Journal of Irrigation and Drainage Engineering, 136(8), 573–577. doi:10.1061/(asce)ir.1943-4774.0000215.
Salmasi, F., & Sattari, M. T. (2017). Predicting discharge coefficient of rectangular broad-crested gabion weir using M5 tree model. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 41(2), 205–212. doi:10.1007/s40996-017-0052-5.
‬ ‫ Al-Mohammed, F. M., & Mohammed, S. H. (2015). Flow through and over gravel gabion weirs. Journal of Kerbala University, 13(25), 193-205.‬‬‬‬‬‬‬
Safarzadeh, A., & Mohajeri, S. H. (2018). Hydrodynamics of Rectangular Broad-Crested Porous Weirs. Journal of Irrigation and Drainage Engineering, 144(10), 4018028. doi:10.1061/(asce)ir.1943-4774.0001338.
Fathi-moghaddam, M., Sadrabadi, M. T., & Rahmanshahi, M. (2018). Numerical simulation of the hydraulic performance of triangular and trapezoidal gabion weirs in free flow condition. Flow Measurement and Instrumentation, 62, 93–104. doi:10.1016/j.flowmeasinst.2018.05.005.
Shariq, A., Hussain, A., & Ahmad, Z. (2020). Discharge equation for the gabion weir under through flow condition. Flow Measurement and Instrumentation, 74, 101769. doi:10.1016/j.flowmeasinst.2020.101769.
Salmasi, F., Sabahi, N., & Abraham, J. (2021). Discharge Coefficients for Rectangular Broad-Crested Gabion Weirs: Experimental Study. Journal of Irrigation and Drainage Engineering, 147(3), 4021001. doi:10.1061/(asce)ir.1943-4774.0001535.
Basnet, K., & Constantinescu, G. (2017). The structure of turbulent flow around vertical plates containing holes and attached to a channel bed. Physics of Fluids, 29(11), 115101. doi:10.1063/1.5009310.
Negm, A. A. M., Al-Brahim, A. M., & Alhamid, A. A. (2002). Combined-free flow over weirs and below gates. Journal of Hydraulic Research, 40(3), 359–365. doi:10.1080/00221680209499950.
Hayawi, H. A. M., Yahia, A. A. G., & Hayawi, G. A. M. (2008). Free combined flow over a triangular weir and under rectangular gate. Damascus University Journal, 24(1), 9-22.
AL-Saadi, A. K. I. (2013). Study coefficient of discharge for a combined free flow over weir and under gate for multi cases. Euphrates journal of agriculture science, 5(4), 26-35.
Guven, A., Hassan, M., & Sabir, S. (2013). Experimental investigation on discharge coefficient for a combined broad crested weir-box culvert structure. Journal of Hydrology, 500, 97–103. doi:10.1016/j.jhydrol.2013.07.021.
Nouri, M., & Hemmati, M. (2020). Discharge coefficient in the combined weir-gate structure. Flow Measurement and Instrumentation, 75, 101780. doi:10.1016/j.flowmeasinst.2020.101780.
Zeinivand, M., Barani, S., & Ghomeshi, M. (2024). Investigating the process of changing the discharge coefficient of the flow passing through the combined structure of rectangular sharp-crested weir with multiple-gates. Ain Shams Engineering Journal, 15(2), 102418. doi:10.1016/j.asej.2023.102418.
Daneshfaraz, R., Minaei, O., Abraham, J., Dadashi, S., & Ghaderi, A. (2021). 3-D Numerical simulation of water flow over a broad-crested weir with openings. ISH Journal of Hydraulic Engineering, 27(S1), 88–96. doi:10.1080/09715010.2019.1581098.
Abdel Halim, N. A., Sherif, M. M., & El-Zaher, A. S. (1991). On the Fayoum weirs with orifices. Journal of Engineering and Applied Science, 38(5), 893-904.
Elazizy I.M. (2005). Hydraulic characteristics of weir with a slot. Engineering Research Journal, 2005(99), 149–63.
Samani, J. M., & Mazaheri, M. (2009). Combined Flow over Weir and under Gate. Journal of Hydraulic Engineering, 135(3), 224–227. doi:10.1061/(asce)0733-9429(2009)135:3(224).
Mohamed, H. I., Abozeid, G., & Shehata, S. M. (2010). Hydraulics of clear and submerged overfall weirs with bottom circular-openings. Ain Shams Engineering Journal, 1(2), 115–119. doi:10.1016/j.asej.2011.03.004.
Saad, N. Y., & Fattouh, E. M. (2017). Hydraulic characteristics of flow over weirs with circular openings. Ain Shams Engineering Journal, 8(4), 515–522. doi:10.1016/j.asej.2016.05.007.
Ohmoto, T., & Hirotaka, U. (2019). Effects Of Weir Within Opening on Bed Configuration and Flow Structure. 38th IAHR World Congress: Water: Connecting the World, 38, 33–40. doi:10.3850/38wc092019-0740.
Salehi, S., & Azimi, A. H. (2019). Discharge Characteristics of Weir-Orifice and Weir-Gate Structures. Journal of Irrigation and Drainage Engineering, 145(11), 4019025. doi:10.1061/(asce)ir.1943-4774.0001421.
Jalil, S. A., & Sarhan, S. A. (2013). Experimental study of combined oblique weir and gate structure. ARPN Journal of Engineering and Applied Sciences, 8(4), 306-315.
Al-Suhaili, R. H., Al-Baidhani, J. H., & Al-Mansori, N. (2014). Hydraulic characteristics of a rectangular weir combined with equal and unequal size three rectangular bottom openings. International Journal of Computational Engineering Research, 4(1), 13-29.
Fu, Z. F., Cui, Z., Dai, W. H., & Chen, Y. J. (2018). Discharge coefficient of combined orifice-weir flow. Water (Switzerland), 10(6), 699. doi:10.3390/w10060699.
El-Belasy, A. M. (2013). Developing Formulae for combined weir and orifice (case study: EL-Fayoum weirs). Alexandria Engineering Journal, 52(4), 763–768. doi:10.1016/j.aej.2013.08.001.
El-Baradei, S. A., El-Abd, M., & Hazem, N. (2024). Estimate of Power Output from Hydraulic Jumps Generated Downstream from Barrages. Journal of Human, Earth, and Future, 5(1), 72-84. doi:10.28991/HEF-2024-05-01-06.
Alsaydalani, M. O. A. (2024). Discharge Coefficient of a Two-Rectangle Compound Weir combined with a Semicircular Gate beneath it under Various Hydraulic and Geometric Conditions. Engineering, Technology and Applied Science Research, 14(1), 12587–12594. doi:10.48084/etasr.6605.
Gubashi, K. R., Al-Hashimi, S. A., Mulahasan, S., & Al-Madhhachi, A. S. T. (2024). A Numerical Model to Evaluate Flow Characteristics in a Circular Vegetation Patch for Flume Experiments. Journal of Applied Science and Engineering, 28(1), 75–91. doi:10.6180/jase.202501_28(1).0008.
Gubashi, K. R., Mulahasan, S., Jameel, M. A., & Al-Madhhachi, A. S. T. (2022). Evaluation drag coefficients for circular patch vegetation with different riverbed roughness. Cogent Engineering, 9(1), 2044574. doi:10.1080/23311916.2022.2044574.
Daneshfaraz, R., Majedi Asl, M., Razmi, S., Norouzi, R., & Abraham, J. (2020). Experimental investigation of the effect of dual horizontal screens on the hydraulic performance of a vertical drop. International Journal of Environmental Science and Technology, 17(5), 2927–2936. doi:10.1007/s13762-019-02622-x.
Al-Hashimi, S. A. M., Al-Osmy, S. A. T., & Mulahasan, S. (2020). Water surface profile and flow pattern simulation over bridge deck slab. Journal of Engineering Science and Technology, 15(1), 291–304.
Kara, S., Mulahasan, S., Stoesser, T., & Sturm, T. (2014). Water surface response to flow through bridge openings. River Flow, 693–699, CRC Press, Boca Raton, United States. doi:10.1201/b17133-95.
Kara, S., Stoesser, T., Sturm, T. W., & Mulahasan, S. (2015). Flow dynamics through a submerged bridge opening with overtopping. Journal of Hydraulic Research, 53(2), 186–195. doi:10.1080/00221686.2014.967821.
DOI: 10.28991/CEJ-2025-011-05-016
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Saad Mulahasan, Fadhil M. Al-Mohammed, Nagham Rajaa, Karim R Gubashi

This work is licensed under a Creative Commons Attribution 4.0 International License.