Analysis of Rock Quarry Sand and Bottom Ash Reinforced by Randomly Distributed PET Rings

Jakub Stacho, Ivan Slávik, Monika Sulovska, Matus Kolenak

Abstract


The study presented deals with determining the shear strength and deformation properties of coarse-grained waste materials, such as rock quarry sand (RQS) and bottom ash (BA), which can be improved using randomly distributed reinforcements made of polyethylene terephthalate (PET) rings. The tests were executed for a degree of reinforcement n, i.e., a ratio of a PET ring weight to the weight of the dry parent materials, which equals about n = 0.25%, 0.5%, and 1.0% in the case of RQS, and n = 0.5%, 1.0%, and 1.5% in the case of BA. The results showed that the most effective improvement in the shear strength properties can be achieved for n = 0.25 - 0.5% in the case of RQS and n = 0.5 - 1.0 % in the case of BA. Reinforcing RQS by n = 1.0% or BA by n = 1.5% led to a significant decrease in the 1D deformation modulus. The positive effect of randomly distributed PET ring reinforcements on the properties of RQS and BA materials was also demonstrated using physical modeling. An embankment model made of RQS and reinforced by PET rings (n = 0.25 %) can carry up to a 2.8 times greater load than an embankment model made of the parent RQS. An embankment model made of BA with PET rings (n = 0.5%) can carry up to a 2.3 times greater load than an embankment model made of the parent BA.

 

Doi: 10.28991/CEJ-2025-011-05-06

Full Text: PDF


Keywords


Soil Improvement; Soil Reinforcement; Distributed Reinforcement; PET; PET Rings; Rock Quarry Sand; Bottom Ash; Direct Shear Test; Compression Test; Physical Modeling.

References


Allen, T. M., & Bathurst, R. J. (2014). Design and Performance of 6.3-m-High, Block-Faced Geogrid Wall Designed Using K-Stiffness Method. Journal of Geotechnical and Geoenvironmental Engineering, 140(2), 12. doi:10.1061/(asce)gt.1943-5606.0001013.

Drusa, M., VlÄek, J., HoliÄková, M., & Kais, L. (2016). Analytical and Numerical Evaluation of Limit States of MSE Wall Structure. Civil and Environmental Engineering, 12(2), 145–152. doi:10.1515/cee-2016-0020.

Scotland, I., Dixon, N., Frost, M., Fowmes, G., & Horgan, G. (2016). Modelling deformation during the construction of wrapped Geogrid-reinforced structures. Geosynthetics International, 23(3), 219–232. doi:10.1680/jgein.15.00049.

Sulovska, M., & Stacho, J. (2021). Analysis of Geogrid Reinforced Structures with a Passive Facing System Using Different Computational Methods. Civil and Environmental Engineering, 17(2), 500–512. doi:10.2478/cee-2021-0052.

Sulovska, M. (2019). Design Of A Road Embankment Reinforced Using A Geogrid. 19th International Multidisciplinary Scientific GeoConference SGEM2019, Ecology, Economics, Education and Legislation. doi:10.5593/sgem2019/1.2/s02.019.

Arulrajah, A., Abdullah, A., Bo, M. W., & Bouazza, A. (2009). Ground improvement techniques for railway embankments. Proceedings of the Institution of Civil Engineers: Ground Improvement, 162(1), 3–14. doi:10.1680/grim.2009.162.1.3.

Esen, A. F., Woodward, P. K., Laghrouche, O., Čebašek, T. M., Brennan, A. J., Robinson, S., & Connolly, D. P. (2021). Full-scale laboratory testing of a geosynthetically reinforced soil railway structure. Transportation Geotechnics, 28(1), 12. doi:10.1016/j.trgeo.2021.100526.

Yonezawa, T., Yamazaki, T., Tateyama, M., & Tatsuoka, F. (2014). Design and construction of geosynthetic-reinforced soil structures for Hokkaido high-speed train line. Transportation Geotechnics, 1(1), 3–20. doi:10.1016/j.trgeo.2013.12.001.

Blackwood, T. W., & Vulova, C. V. (2006). Geogrid Reinforced Embankment Constructed over Peat Soils in Clark County, Washington: Design and Field Performance. Airfield and Highway Pavement, 317–328. doi:10.1061/40838(191)27.

Hu, Y., Li, H., Wang, X., Wang, Q. A., & Zhang, X. (2011). Application of Geogrid in Widening Highway Embankment. ICCTP 2011, 3059–3066. doi:10.1061/41186(421)304.

Liu, K. F., Feng, W. Q., Cai, Y. H., Xu, H., & Wu, P. C. (2023). Physical model study of pile type effect on long-term settlement of geosynthetic-reinforced pile-supported embankment under traffic loading. Transportation Geotechnics, 38(1), 12. doi:10.1016/j.trgeo.2022.100923.

Zheng, G., Xia, B., Zhou, H., Yu, X., & Diao, Y. (2023). Influence of deep-cement-mixing column rows on the performance of geosynthetics-reinforced column-supported railway embankment. Transportation Geotechnics, 41(1), 14. doi:10.1016/j.trgeo.2023.101012.

Vega-Meyer, R., & Shao, Y. (2005). Geogrid-Reinforced and Pile-Supported Roadway Embankment. Contemporary Issues in Foundation Engineering, 1–13. doi:10.1061/40777(156)9.

Rahmawati, C., Aisyah, S., Maulana, M. M., & Ahmad, J. (2024). Artificial Intelligence Models for Predicting the Compressive Strength of Geopolymer Cements. Civil Engineering Journal, 10, 37-50. doi:10.28991/CEJ-SP2024-010-03.

Kumar, P., & Singh, S. P. (2008). Fiber-reinforced fly ash subbases in rural roads. Journal of Transportation Engineering, 134(4), 171–180. doi:10.1061/(ASCE)0733-947X(2008)134:4(171).

Bacco, C. E. R., Parga-Montoya, N., Landeros, M. D. C. M., Cortés-Palacios, H. A., & Vidales, M. Y. G. (2024). Analysis of the Establishment, Development and Future of Agricultural Reconversion. Journal of Human, Earth, and Future, 5(4), 543-559. doi:10.28991/HEF-2024-05-04-01.

Heineck, K. S., Coop, M. R., & Consoli, N. C. (2005). Effect of Microreinforcement of Soils from Very Small to Large Shear Strains. Journal of Geotechnical and Geoenvironmental Engineering, 131(8), 1024–1033. doi:10.1061/(asce)1090-0241(2005)131:8(1024).

Wu, D., Wang, C., Liu, H., Liu, X., Wang, H., & Wang, Q. (2024). Recycled polyester fiber reinforcing red mud-improved volcanic ash as a sustainable construction material. Construction and Building Materials, 413(1), 11. doi:10.1016/j.conbuildmat.2023.134821.

Paul, J. V., & Sneha, A. R. M. (2016). Effect of random inclusion of bamboo fibers on strength behaviour of flyash treated black cotton soil. International Journal of Civil Engineering and Technology, 7(5), 153–160.

Dandin, S., & Kulkarni, M. (2022). Effect of isolated footing on fly ash subgrade reinforced with PET bottles: An experimental and analytical study. Construction and Building Materials, 353(1), 14. doi:10.1016/j.conbuildmat.2022.129095.

Valipour, M., Shourijeh, P. T., & Mohammadinia, A. (2021). Application of recycled tire polymer fibers and glass fibers for clay reinforcement. Transportation Geotechnics, 27(1), 14. doi:10.1016/j.trgeo.2020.100474.

EsmaeilpourShirvani, N., TaghaviGhalesari, A., Khaleghnejad Tabari, M., & Janalizadeh Choobbasti, A. (2019). Improvement of the engineering behavior of sand-clay mixtures using kenaf fiber reinforcement. Transportation Geotechnics, 19, 1–8. doi:10.1016/j.trgeo.2019.01.004.

Nugroho, S. A., Wardani, S. R., Muntohar, A. S., & Satibi, S. (2024). Effect of Coal Combustion Waste on Cement-Treated Clay. Civil Engineering Journal, 10(11), 3603-3612. doi:10.28991/CEJ-2024-010-11-010.

Kumar, A., Walia, B. S., & Bajaj, A. (2007). Influence of Fly Ash, Lime, and Polyester Fibers on Compaction and Strength Properties of Expansive Soil. Journal of Materials in Civil Engineering, 19(3), 242–248. doi:10.1061/(asce)0899-1561(2007)19:3(242).

Dang, L. C., & Khabbaz, H. (2019). Shear Strength Behaviour of Bagasse Fibre Reinforced Expansive Soil. IACGE 2018, 393–402. doi:10.1061/9780784482049.038.

Tiwari, N., Satyam, N., & Puppala, A. J. (2021). Strength and durability assessment of expansive soil stabilized with recycled ash and natural fibers. Transportation Geotechnics, 29(1), 9. doi:10.1016/j.trgeo.2021.100556.

Balani, D. M. P., Kikumoto, M., & Cui, Y. (2023). Enhanced sand strength through low-density polyethylene reinforcement. Construction and Building Materials, 409(1), 10. doi:10.1016/j.conbuildmat.2023.133928.

Festugato, L., Flórez Gálvez, J. H., Dias Miguel, G., & Consoli, N. C. (2022). Cyclic response of fibre reinforced dense sand. Transportation Geotechnics, 37(1). doi:10.1016/j.trgeo.2022.100811.

Ghadr, S. (2020). Effect of grain size on undrained anisotropic behaviour of sand–fibre composite. Transportation Geotechnics, 22(1), 15. doi:10.1016/j.trgeo.2020.100323.

Namjoo, A. M., Jafari, K., & Toufigh, V. (2020). Effect of particle size of sand and surface properties of reinforcement on sand-geosynthetics and sand–carbon fiber polymer interface shear behavior. Transportation Geotechnics, 24(1), 18. doi:10.1016/j.trgeo.2020.100403.

Hasanzadeh, A., & Shooshpasha, I. (2023). PET fiber reinforcement efficiency in the mechanical and microstructural characteristics of cemented sand modified with silica fume. Construction and Building Materials, 397(1), 17. doi:10.1016/j.conbuildmat.2023.132363.

Ferreira, J. W. dos S., Senez, P. C., & Casagrande, M. D. T. (2021). Pet fiber reinforced sand performance under triaxial and plate load tests. Case Studies in Construction Materials, 15(1), 13. doi:10.1016/j.cscm.2021.e00741.

Sadek, S., Najjar, S. S., & Freiha, F. (2010). Shear Strength of Fiber-Reinforced Sands. Journal of Geotechnical and Geoenvironmental Engineering, 136(3), 490–499. doi:10.1061/(asce)gt.1943-5606.0000235.

Narani, S. S., Abbaspour, M., Mir Mohammad Hosseini, S. M., & Moghadas Nejad, F. (2020). Long-term dynamic behavior of a sandy subgrade reinforced by Waste Tire Textile Fibers (WTTFs). Transportation Geotechnics, 24(1), 11. doi:10.1016/j.trgeo.2020.100375.

Tang, C.-S., Wang, D.-Y., Cui, Y.-J., Shi, B., & Li, J. (2016). Tensile Strength of Fiber-Reinforced Soil. Journal of Materials in Civil Engineering, 28(7), 13. doi:10.1061/(asce)mt.1943-5533.0001546.

Li, C., & Zornberg, J. G. (2019). Shear Strength Behavior of Soils Reinforced with Weak Fibers. Journal of Geotechnical and Geoenvironmental Engineering, 145(9), 7. doi:10.1061/(asce)gt.1943-5606.0002109.

Tran, K. Q., Satomi, T., & Takahashi, H. (2018). Effect of waste cornsilk fiber reinforcement on mechanical properties of soft soils. Transportation Geotechnics, 16, 76–84. doi:10.1016/j.trgeo.2018.07.003.

Estabragh, A. R., Bordbar, A. T., & Javadi, A. A. (2011). Mechanical Behavior of a Clay Soil Reinforced with Nylon Fibers. Geotechnical and Geological Engineering, 29(5), 899–908. doi:10.1007/s10706-011-9427-8.

Kumar, S., Sahu, A. K., & Naval, S. (2021). Study on the swelling behavior of clayey soil blended with geocell and jute fibre. Civil Engineering Journal (Iran), 7(8), 1327–1340. doi:10.28991/cej-2021-03091728.

Sharma, Y., Purohit, D. G. M., & Sharma, S. (2017). Improvement of soil properties by using jute fibre as soil stabilizer. American Journal of Engineering Research, 6(10), 123-129.

Khalid, B., & Alshawmar, F. (2024). Comprehensive Review of Geotechnical Engineering Properties of Recycled Polyethylene Terephthalate Fibers and Strips for Soil Stabilization. Polymers, 16(13), 31. doi:10.3390/polym16131764.

Hedayati-Dezfooli, M., Mehdi Moayyedian, Ali Dinc, Mostafa Abdrabboh, Ahmed Saber, and A. M. Amer. "Optimizing Injection Molding for Propellers with Soft Computing, Fuzzy Evaluation, and Taguchi Method." Emerging Science Journal 8, no. 5 (2024): 2101-2119. doi:10.28991/ESJ-2024-08-05-025.

Cai, Y., Shi, B., Ng, C. W. W., & Tang, C. (2006). Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil. Engineering Geology, 87(3–4), 230–240. doi:10.1016/j.enggeo.2006.07.007.

Sukontasukkul, P., & Jamsawang, P. (2012). Use of steel and polypropylene fibers to improve flexural performance of deep soil-cement column. Construction and Building Materials, 29, 201–205. doi:10.1016/j.conbuildmat.2011.10.040.

Shah, A., & Thaker, T. (2025). Enhancing Soil Subgrade Strength Using Waste Plastic Water Bottles as a Reinforcement. Geo-EnvironMeet 2025, 283–290. doi:10.1061/9780784485705.030.

Islam, M. R., Khan, Md. Z. A., Islam, Md. R., Islam, N., Azam, M. S., Ahmed, T., & Roy, K. (2025). A Sustainable Soil Stabilization Technique Using Medical Waste Incineration Ash, Coal-Based Fly Ash, and Polyethylene Terephthalate Strips. Journal of Materials in Civil Engineering, 37(4). doi:10.1061/jmcee7.mteng-18665.

Zhu, J., Saberian, M., Li, J., Maqsood, T., & Yang, W. (2023). Performance of clay soil reinforced with PET plastic waste subjected to freeze-thaw cycles for pavement subgrade application. Cold Regions Science and Technology, 214(1), 15. doi:10.1016/j.coldregions.2023.103957.

Louzada, N. dos S. L., Malko, J. A. C., & Casagrande, M. D. T. (2019). Behavior of Clayey Soil Reinforced with Polyethylene Terephthalate. Journal of Materials in Civil Engineering, 31(10). doi:10.1061/(asce)mt.1943-5533.0002863.

Sivakumar Babu, G. L., & Raja Jaladurgam, M. E. (2014). Strength and Deformation Characteristics of Fly Ash Mixed with Randomly Distributed Plastic Waste. Journal of Materials in Civil Engineering, 26(12), 7. doi:10.1061/(asce)mt.1943-5533.0001014.

Fareghian, M., Afrazi, M., & Fakhimi, A. (2023). Soil Reinforcement by Waste Tire Textile Fibers: Small-Scale Experimental Tests. Journal of Materials in Civil Engineering, 35(2), 14. doi:10.1061/(asce)mt.1943-5533.0004574.

Dandin, S., Sathe, S., Wagale, M., & Jomde, A. (2024). Utilizing PET bottles for sustainable cellular reinforcement: A study on enhancing fly ash backfill bearing strength with innovative geocell alternative. Construction and Building Materials, 433(1), 11. doi:10.1016/j.conbuildmat.2024.136641.

Zhao, Y., Yang, Y., Ling, X., Gong, W., Li, G., & Su, L. (2021). Dynamic behavior of natural sand soils and fiber reinforced soils in heavy-haul railway embankment under multistage cyclic loading. Transportation Geotechnics, 28(1), 11. doi:10.1016/j.trgeo.2020.100507.

Hazirbaba, K. (2017). Large-scale direct shear and CBR performance of geofibre-reinforced sand. Road Materials and Pavement Design, 19(6), 1350–1371. doi:10.1080/14680629.2017.1310667.

Nguyen, G. (2019). Laboratory Study of Soil Shear Strength Improvement with Polyester Fibres. Fibres & Textiles in Eastern Europe, 27(2(134)), 90–99. doi:10.5604/01.3001.0012.9993.

Aouf, G., Alhakim, G., & Jaber, L. (2024). Utilizing Recycled Rubber and Municipal Waste Incineration Fly Ash in Cement-Stabilized Clayey Soils. Civil Engineering Journal, 10(11), 3721-3737.

Khan, B. J., Ahmad, M., Sabri, M. M. S., Ahmad, I., Zamin, B., & Niekurzak, M. (2022). Experimental and Numerical Evaluation of Mechanically Stabilized Earth Wall with Deformed Steel Bars Embedded in Tire Shred-Sand Mixture. Buildings, 12(5), 17. doi:10.3390/buildings12050548.

VlÄek, J., Drusa, M., Gago, F., & Mihálik, J. (2023). Analysis of a Large-Scale Physical Model of Geosynthetic-Reinforced Piled Embankment and Analytical Design Methods. Buildings, 13(6), 21. doi:10.3390/buildings13061464.

Lal, B. R. R., & Mandal, J. N. (2013). Effect of Reinforcement Coverage Ratio on Cellular Reinforced Fly Ash Walls. Geo-Congress, 72–81. doi:10.1061/9780784412787.008.

Nadaf, M. B., & Mandal, J. N. (2017). Behavior of Reinforced Fly Ash Slopes with Cellular Mattress and Strips under Strip Loading. Journal of Hazardous, Toxic, and Radioactive Waste, 21(4), 13. doi:10.1061/(asce)hz.2153-5515.0000376.

ICIS. (2022). Independent Commodity Intelligence Service: PET Market in Europe. State of Play. Production, Collection & Recycling. ICISL, London, United Kingdom. Available online: https://www.icis.com/explore/resources/pet-market-state-of-play-2022/ (accessed on April 2025).

Dandin, S., Sathe, S., Wagale, M., & Jomde, A. (2024). Utilizing PET bottles for sustainable cellular reinforcement: A study on enhancing fly ash backfill bearing strength with innovative geocell alternative. Construction and Building Materials, 433, 136641. doi:10.1016/j.conbuildmat.2024.136641.

Choudhary, A. K., Jha, J. N., & Fulambarkar, S. (2019). Strength and Deformation Characteristics of Bottom-Ash Reinforced with Single Geocell Mattress Made of Waste Pet Bottles. Geo-Congress 2019, 263–272. doi:10.1061/9780784482148.027.

Stacho, J., & Sulovska, M. (2022). Shear Strength Properties of Coarse-Grained Soils Determined Using Large-Size Direct Shear Test. Civil and Environmental Engineering, 18(1), 244–257. doi:10.2478/cee-2022-0023.

Atkinson, J. (2017). The mechanics of soils and foundations. CRC press, Boca Raton, United States. doi:10.1201/9781315273549.

Simoni, A., & Houlsby, G. T. (2006). The direct shear strength and dilatancy of sand-gravel mixtures. Geotechnical and Geological Engineering, 24(3), 523–549. doi:10.1007/s10706-004-5832-6.

Won, M. S., Langcuyan, C. P., & Choi, G. H. (2021). Experimental study on the behavior of MSE wall having full-height rigid facing and segmental panel-type wall facing. Open Geosciences, 13(1), 932–943. doi:10.1515/geo-2020-0278.

Hamidi, A., Alizadeh, M., & Soleimani, S. M. (2009). Effect of particle crushing on shear strength and dilation characteristics of sand-gravel mixtures. International Journal of Civil Engineering, 7(1), 61–71.

Strahler, A., Stuedlein, A. W., & Arduino, P. W. (2016). Stress-Strain Response and Dilatancy of Sandy Gravel in Triaxial Compression and Plane Strain. Journal of Geotechnical and Geoenvironmental Engineering, 142(4). doi:10.1061/(asce)gt.1943-5606.0001435.

Stacho, J., Sulovska, M., & Hrustinec, L. (2024). Determining the Dilatancy of Gravels Using a Large-size Direct Shear Test. Jordan Journal of Civil Engineering, 18(3), 492–502. doi:10.14525/JJCE.v18i3.11.

Michalowski, R. L., & Čermák, J. (2003). Triaxial Compression of Sand Reinforced with Fibers. Journal of Geotechnical and Geoenvironmental Engineering, 129(2), 125–136. doi:10.1061/(asce)1090-0241(2003)129:2(125).

Gray, D. H., & Ohashi, H. (1983). Mechanics of fiber reinforcement in sand. Journal of Geotechnical Engineering, 109(3), 335–353. doi:10.1061/(ASCE)0733-9410(1983)109:3(335).


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-05-06

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Jakub Stacho, Ivan Slavik, Monika Sulovska, Matus Kolenak

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message