Analysis of Rock Quarry Sand and Bottom Ash Reinforced by Randomly Distributed PET Rings
Abstract
Â
Doi: 10.28991/CEJ-2025-011-05-06
Full Text: PDF
Keywords
References
Allen, T. M., & Bathurst, R. J. (2014). Design and Performance of 6.3-m-High, Block-Faced Geogrid Wall Designed Using K-Stiffness Method. Journal of Geotechnical and Geoenvironmental Engineering, 140(2), 12. doi:10.1061/(asce)gt.1943-5606.0001013.
Drusa, M., VlÄek, J., HoliÄková, M., & Kais, L. (2016). Analytical and Numerical Evaluation of Limit States of MSE Wall Structure. Civil and Environmental Engineering, 12(2), 145–152. doi:10.1515/cee-2016-0020.
Scotland, I., Dixon, N., Frost, M., Fowmes, G., & Horgan, G. (2016). Modelling deformation during the construction of wrapped Geogrid-reinforced structures. Geosynthetics International, 23(3), 219–232. doi:10.1680/jgein.15.00049.
Sulovska, M., & Stacho, J. (2021). Analysis of Geogrid Reinforced Structures with a Passive Facing System Using Different Computational Methods. Civil and Environmental Engineering, 17(2), 500–512. doi:10.2478/cee-2021-0052.
Sulovska, M. (2019). Design Of A Road Embankment Reinforced Using A Geogrid. 19th International Multidisciplinary Scientific GeoConference SGEM2019, Ecology, Economics, Education and Legislation. doi:10.5593/sgem2019/1.2/s02.019.
Arulrajah, A., Abdullah, A., Bo, M. W., & Bouazza, A. (2009). Ground improvement techniques for railway embankments. Proceedings of the Institution of Civil Engineers: Ground Improvement, 162(1), 3–14. doi:10.1680/grim.2009.162.1.3.
Esen, A. F., Woodward, P. K., Laghrouche, O., Čebašek, T. M., Brennan, A. J., Robinson, S., & Connolly, D. P. (2021). Full-scale laboratory testing of a geosynthetically reinforced soil railway structure. Transportation Geotechnics, 28(1), 12. doi:10.1016/j.trgeo.2021.100526.
Yonezawa, T., Yamazaki, T., Tateyama, M., & Tatsuoka, F. (2014). Design and construction of geosynthetic-reinforced soil structures for Hokkaido high-speed train line. Transportation Geotechnics, 1(1), 3–20. doi:10.1016/j.trgeo.2013.12.001.
Blackwood, T. W., & Vulova, C. V. (2006). Geogrid Reinforced Embankment Constructed over Peat Soils in Clark County, Washington: Design and Field Performance. Airfield and Highway Pavement, 317–328. doi:10.1061/40838(191)27.
Hu, Y., Li, H., Wang, X., Wang, Q. A., & Zhang, X. (2011). Application of Geogrid in Widening Highway Embankment. ICCTP 2011, 3059–3066. doi:10.1061/41186(421)304.
Liu, K. F., Feng, W. Q., Cai, Y. H., Xu, H., & Wu, P. C. (2023). Physical model study of pile type effect on long-term settlement of geosynthetic-reinforced pile-supported embankment under traffic loading. Transportation Geotechnics, 38(1), 12. doi:10.1016/j.trgeo.2022.100923.
Zheng, G., Xia, B., Zhou, H., Yu, X., & Diao, Y. (2023). Influence of deep-cement-mixing column rows on the performance of geosynthetics-reinforced column-supported railway embankment. Transportation Geotechnics, 41(1), 14. doi:10.1016/j.trgeo.2023.101012.
Vega-Meyer, R., & Shao, Y. (2005). Geogrid-Reinforced and Pile-Supported Roadway Embankment. Contemporary Issues in Foundation Engineering, 1–13. doi:10.1061/40777(156)9.
Rahmawati, C., Aisyah, S., Maulana, M. M., & Ahmad, J. (2024). Artificial Intelligence Models for Predicting the Compressive Strength of Geopolymer Cements. Civil Engineering Journal, 10, 37-50. doi:10.28991/CEJ-SP2024-010-03.
Kumar, P., & Singh, S. P. (2008). Fiber-reinforced fly ash subbases in rural roads. Journal of Transportation Engineering, 134(4), 171–180. doi:10.1061/(ASCE)0733-947X(2008)134:4(171).
Bacco, C. E. R., Parga-Montoya, N., Landeros, M. D. C. M., Cortés-Palacios, H. A., & Vidales, M. Y. G. (2024). Analysis of the Establishment, Development and Future of Agricultural Reconversion. Journal of Human, Earth, and Future, 5(4), 543-559. doi:10.28991/HEF-2024-05-04-01.
Heineck, K. S., Coop, M. R., & Consoli, N. C. (2005). Effect of Microreinforcement of Soils from Very Small to Large Shear Strains. Journal of Geotechnical and Geoenvironmental Engineering, 131(8), 1024–1033. doi:10.1061/(asce)1090-0241(2005)131:8(1024).
Wu, D., Wang, C., Liu, H., Liu, X., Wang, H., & Wang, Q. (2024). Recycled polyester fiber reinforcing red mud-improved volcanic ash as a sustainable construction material. Construction and Building Materials, 413(1), 11. doi:10.1016/j.conbuildmat.2023.134821.
Paul, J. V., & Sneha, A. R. M. (2016). Effect of random inclusion of bamboo fibers on strength behaviour of flyash treated black cotton soil. International Journal of Civil Engineering and Technology, 7(5), 153–160.
Dandin, S., & Kulkarni, M. (2022). Effect of isolated footing on fly ash subgrade reinforced with PET bottles: An experimental and analytical study. Construction and Building Materials, 353(1), 14. doi:10.1016/j.conbuildmat.2022.129095.
Valipour, M., Shourijeh, P. T., & Mohammadinia, A. (2021). Application of recycled tire polymer fibers and glass fibers for clay reinforcement. Transportation Geotechnics, 27(1), 14. doi:10.1016/j.trgeo.2020.100474.
EsmaeilpourShirvani, N., TaghaviGhalesari, A., Khaleghnejad Tabari, M., & Janalizadeh Choobbasti, A. (2019). Improvement of the engineering behavior of sand-clay mixtures using kenaf fiber reinforcement. Transportation Geotechnics, 19, 1–8. doi:10.1016/j.trgeo.2019.01.004.
Nugroho, S. A., Wardani, S. R., Muntohar, A. S., & Satibi, S. (2024). Effect of Coal Combustion Waste on Cement-Treated Clay. Civil Engineering Journal, 10(11), 3603-3612. doi:10.28991/CEJ-2024-010-11-010.
Kumar, A., Walia, B. S., & Bajaj, A. (2007). Influence of Fly Ash, Lime, and Polyester Fibers on Compaction and Strength Properties of Expansive Soil. Journal of Materials in Civil Engineering, 19(3), 242–248. doi:10.1061/(asce)0899-1561(2007)19:3(242).
Dang, L. C., & Khabbaz, H. (2019). Shear Strength Behaviour of Bagasse Fibre Reinforced Expansive Soil. IACGE 2018, 393–402. doi:10.1061/9780784482049.038.
Tiwari, N., Satyam, N., & Puppala, A. J. (2021). Strength and durability assessment of expansive soil stabilized with recycled ash and natural fibers. Transportation Geotechnics, 29(1), 9. doi:10.1016/j.trgeo.2021.100556.
Balani, D. M. P., Kikumoto, M., & Cui, Y. (2023). Enhanced sand strength through low-density polyethylene reinforcement. Construction and Building Materials, 409(1), 10. doi:10.1016/j.conbuildmat.2023.133928.
Festugato, L., Flórez Gálvez, J. H., Dias Miguel, G., & Consoli, N. C. (2022). Cyclic response of fibre reinforced dense sand. Transportation Geotechnics, 37(1). doi:10.1016/j.trgeo.2022.100811.
Ghadr, S. (2020). Effect of grain size on undrained anisotropic behaviour of sand–fibre composite. Transportation Geotechnics, 22(1), 15. doi:10.1016/j.trgeo.2020.100323.
Namjoo, A. M., Jafari, K., & Toufigh, V. (2020). Effect of particle size of sand and surface properties of reinforcement on sand-geosynthetics and sand–carbon fiber polymer interface shear behavior. Transportation Geotechnics, 24(1), 18. doi:10.1016/j.trgeo.2020.100403.
Hasanzadeh, A., & Shooshpasha, I. (2023). PET fiber reinforcement efficiency in the mechanical and microstructural characteristics of cemented sand modified with silica fume. Construction and Building Materials, 397(1), 17. doi:10.1016/j.conbuildmat.2023.132363.
Ferreira, J. W. dos S., Senez, P. C., & Casagrande, M. D. T. (2021). Pet fiber reinforced sand performance under triaxial and plate load tests. Case Studies in Construction Materials, 15(1), 13. doi:10.1016/j.cscm.2021.e00741.
Sadek, S., Najjar, S. S., & Freiha, F. (2010). Shear Strength of Fiber-Reinforced Sands. Journal of Geotechnical and Geoenvironmental Engineering, 136(3), 490–499. doi:10.1061/(asce)gt.1943-5606.0000235.
Narani, S. S., Abbaspour, M., Mir Mohammad Hosseini, S. M., & Moghadas Nejad, F. (2020). Long-term dynamic behavior of a sandy subgrade reinforced by Waste Tire Textile Fibers (WTTFs). Transportation Geotechnics, 24(1), 11. doi:10.1016/j.trgeo.2020.100375.
Tang, C.-S., Wang, D.-Y., Cui, Y.-J., Shi, B., & Li, J. (2016). Tensile Strength of Fiber-Reinforced Soil. Journal of Materials in Civil Engineering, 28(7), 13. doi:10.1061/(asce)mt.1943-5533.0001546.
Li, C., & Zornberg, J. G. (2019). Shear Strength Behavior of Soils Reinforced with Weak Fibers. Journal of Geotechnical and Geoenvironmental Engineering, 145(9), 7. doi:10.1061/(asce)gt.1943-5606.0002109.
Tran, K. Q., Satomi, T., & Takahashi, H. (2018). Effect of waste cornsilk fiber reinforcement on mechanical properties of soft soils. Transportation Geotechnics, 16, 76–84. doi:10.1016/j.trgeo.2018.07.003.
Estabragh, A. R., Bordbar, A. T., & Javadi, A. A. (2011). Mechanical Behavior of a Clay Soil Reinforced with Nylon Fibers. Geotechnical and Geological Engineering, 29(5), 899–908. doi:10.1007/s10706-011-9427-8.
Kumar, S., Sahu, A. K., & Naval, S. (2021). Study on the swelling behavior of clayey soil blended with geocell and jute fibre. Civil Engineering Journal (Iran), 7(8), 1327–1340. doi:10.28991/cej-2021-03091728.
Sharma, Y., Purohit, D. G. M., & Sharma, S. (2017). Improvement of soil properties by using jute fibre as soil stabilizer. American Journal of Engineering Research, 6(10), 123-129.
Khalid, B., & Alshawmar, F. (2024). Comprehensive Review of Geotechnical Engineering Properties of Recycled Polyethylene Terephthalate Fibers and Strips for Soil Stabilization. Polymers, 16(13), 31. doi:10.3390/polym16131764.
Hedayati-Dezfooli, M., Mehdi Moayyedian, Ali Dinc, Mostafa Abdrabboh, Ahmed Saber, and A. M. Amer. "Optimizing Injection Molding for Propellers with Soft Computing, Fuzzy Evaluation, and Taguchi Method." Emerging Science Journal 8, no. 5 (2024): 2101-2119. doi:10.28991/ESJ-2024-08-05-025.
Cai, Y., Shi, B., Ng, C. W. W., & Tang, C. (2006). Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil. Engineering Geology, 87(3–4), 230–240. doi:10.1016/j.enggeo.2006.07.007.
Sukontasukkul, P., & Jamsawang, P. (2012). Use of steel and polypropylene fibers to improve flexural performance of deep soil-cement column. Construction and Building Materials, 29, 201–205. doi:10.1016/j.conbuildmat.2011.10.040.
Shah, A., & Thaker, T. (2025). Enhancing Soil Subgrade Strength Using Waste Plastic Water Bottles as a Reinforcement. Geo-EnvironMeet 2025, 283–290. doi:10.1061/9780784485705.030.
Islam, M. R., Khan, Md. Z. A., Islam, Md. R., Islam, N., Azam, M. S., Ahmed, T., & Roy, K. (2025). A Sustainable Soil Stabilization Technique Using Medical Waste Incineration Ash, Coal-Based Fly Ash, and Polyethylene Terephthalate Strips. Journal of Materials in Civil Engineering, 37(4). doi:10.1061/jmcee7.mteng-18665.
Zhu, J., Saberian, M., Li, J., Maqsood, T., & Yang, W. (2023). Performance of clay soil reinforced with PET plastic waste subjected to freeze-thaw cycles for pavement subgrade application. Cold Regions Science and Technology, 214(1), 15. doi:10.1016/j.coldregions.2023.103957.
Louzada, N. dos S. L., Malko, J. A. C., & Casagrande, M. D. T. (2019). Behavior of Clayey Soil Reinforced with Polyethylene Terephthalate. Journal of Materials in Civil Engineering, 31(10). doi:10.1061/(asce)mt.1943-5533.0002863.
Sivakumar Babu, G. L., & Raja Jaladurgam, M. E. (2014). Strength and Deformation Characteristics of Fly Ash Mixed with Randomly Distributed Plastic Waste. Journal of Materials in Civil Engineering, 26(12), 7. doi:10.1061/(asce)mt.1943-5533.0001014.
Fareghian, M., Afrazi, M., & Fakhimi, A. (2023). Soil Reinforcement by Waste Tire Textile Fibers: Small-Scale Experimental Tests. Journal of Materials in Civil Engineering, 35(2), 14. doi:10.1061/(asce)mt.1943-5533.0004574.
Dandin, S., Sathe, S., Wagale, M., & Jomde, A. (2024). Utilizing PET bottles for sustainable cellular reinforcement: A study on enhancing fly ash backfill bearing strength with innovative geocell alternative. Construction and Building Materials, 433(1), 11. doi:10.1016/j.conbuildmat.2024.136641.
Zhao, Y., Yang, Y., Ling, X., Gong, W., Li, G., & Su, L. (2021). Dynamic behavior of natural sand soils and fiber reinforced soils in heavy-haul railway embankment under multistage cyclic loading. Transportation Geotechnics, 28(1), 11. doi:10.1016/j.trgeo.2020.100507.
Hazirbaba, K. (2017). Large-scale direct shear and CBR performance of geofibre-reinforced sand. Road Materials and Pavement Design, 19(6), 1350–1371. doi:10.1080/14680629.2017.1310667.
Nguyen, G. (2019). Laboratory Study of Soil Shear Strength Improvement with Polyester Fibres. Fibres & Textiles in Eastern Europe, 27(2(134)), 90–99. doi:10.5604/01.3001.0012.9993.
Aouf, G., Alhakim, G., & Jaber, L. (2024). Utilizing Recycled Rubber and Municipal Waste Incineration Fly Ash in Cement-Stabilized Clayey Soils. Civil Engineering Journal, 10(11), 3721-3737.
Khan, B. J., Ahmad, M., Sabri, M. M. S., Ahmad, I., Zamin, B., & Niekurzak, M. (2022). Experimental and Numerical Evaluation of Mechanically Stabilized Earth Wall with Deformed Steel Bars Embedded in Tire Shred-Sand Mixture. Buildings, 12(5), 17. doi:10.3390/buildings12050548.
VlÄek, J., Drusa, M., Gago, F., & Mihálik, J. (2023). Analysis of a Large-Scale Physical Model of Geosynthetic-Reinforced Piled Embankment and Analytical Design Methods. Buildings, 13(6), 21. doi:10.3390/buildings13061464.
Lal, B. R. R., & Mandal, J. N. (2013). Effect of Reinforcement Coverage Ratio on Cellular Reinforced Fly Ash Walls. Geo-Congress, 72–81. doi:10.1061/9780784412787.008.
Nadaf, M. B., & Mandal, J. N. (2017). Behavior of Reinforced Fly Ash Slopes with Cellular Mattress and Strips under Strip Loading. Journal of Hazardous, Toxic, and Radioactive Waste, 21(4), 13. doi:10.1061/(asce)hz.2153-5515.0000376.
ICIS. (2022). Independent Commodity Intelligence Service: PET Market in Europe. State of Play. Production, Collection & Recycling. ICISL, London, United Kingdom. Available online: https://www.icis.com/explore/resources/pet-market-state-of-play-2022/ (accessed on April 2025).
Dandin, S., Sathe, S., Wagale, M., & Jomde, A. (2024). Utilizing PET bottles for sustainable cellular reinforcement: A study on enhancing fly ash backfill bearing strength with innovative geocell alternative. Construction and Building Materials, 433, 136641. doi:10.1016/j.conbuildmat.2024.136641.
Choudhary, A. K., Jha, J. N., & Fulambarkar, S. (2019). Strength and Deformation Characteristics of Bottom-Ash Reinforced with Single Geocell Mattress Made of Waste Pet Bottles. Geo-Congress 2019, 263–272. doi:10.1061/9780784482148.027.
Stacho, J., & Sulovska, M. (2022). Shear Strength Properties of Coarse-Grained Soils Determined Using Large-Size Direct Shear Test. Civil and Environmental Engineering, 18(1), 244–257. doi:10.2478/cee-2022-0023.
Atkinson, J. (2017). The mechanics of soils and foundations. CRC press, Boca Raton, United States. doi:10.1201/9781315273549.
Simoni, A., & Houlsby, G. T. (2006). The direct shear strength and dilatancy of sand-gravel mixtures. Geotechnical and Geological Engineering, 24(3), 523–549. doi:10.1007/s10706-004-5832-6.
Won, M. S., Langcuyan, C. P., & Choi, G. H. (2021). Experimental study on the behavior of MSE wall having full-height rigid facing and segmental panel-type wall facing. Open Geosciences, 13(1), 932–943. doi:10.1515/geo-2020-0278.
Hamidi, A., Alizadeh, M., & Soleimani, S. M. (2009). Effect of particle crushing on shear strength and dilation characteristics of sand-gravel mixtures. International Journal of Civil Engineering, 7(1), 61–71.
Strahler, A., Stuedlein, A. W., & Arduino, P. W. (2016). Stress-Strain Response and Dilatancy of Sandy Gravel in Triaxial Compression and Plane Strain. Journal of Geotechnical and Geoenvironmental Engineering, 142(4). doi:10.1061/(asce)gt.1943-5606.0001435.
Stacho, J., Sulovska, M., & Hrustinec, L. (2024). Determining the Dilatancy of Gravels Using a Large-size Direct Shear Test. Jordan Journal of Civil Engineering, 18(3), 492–502. doi:10.14525/JJCE.v18i3.11.
Michalowski, R. L., & Čermák, J. (2003). Triaxial Compression of Sand Reinforced with Fibers. Journal of Geotechnical and Geoenvironmental Engineering, 129(2), 125–136. doi:10.1061/(asce)1090-0241(2003)129:2(125).
Gray, D. H., & Ohashi, H. (1983). Mechanics of fiber reinforcement in sand. Journal of Geotechnical Engineering, 109(3), 335–353. doi:10.1061/(ASCE)0733-9410(1983)109:3(335).
DOI: 10.28991/CEJ-2025-011-05-06
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Jakub Stacho, Ivan Slavik, Monika Sulovska, Matus Kolenak

This work is licensed under a Creative Commons Attribution 4.0 International License.