Assessment of Primary and Secondary Compression Parameters of Tropical Fibrous Peat Using Improved-CRS Consolidation Test
Abstract
Â
Doi: 10.28991/CEJ-2025-011-05-03
Full Text: PDF
Keywords
References
Anda, M., Ritung, S., Suryani, E., Sukarman, Hikmat, M., Yatno, E., Mulyani, A., Subandiono, R. E., Suratman, & Husnain. (2021). Revisiting tropical peatlands in Indonesia: Semi-detailed mapping, extent and depth distribution assessment. Geoderma, 402, 402. doi:10.1016/j.geoderma.2021.115235.
Page, S. E., Rieley, J. O., & Banks, C. J. (2011). Global and regional importance of the tropical peatland carbon pool. Global Change Biology, 17(2), 798–818. doi:10.1111/j.1365-2486.2010.02279.x.
Omar, M. S., Ifandi, E., Sukri, R. S., Kalaitzidis, S., Christanis, K., Lai, D. T. C., Bashir, S., & Tsikouras, B. (2022). Peatlands in Southeast Asia: A comprehensive geological review. Earth-Science Reviews, 232, 104149. doi:10.1016/j.earscirev.2022.104149.
ASTM D2487-06. (2010). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-06.
ASTM D4427-18. (2023). Standard Classification of Peat Samples by Laboratory Testing. ASTM International, Pennsylvania, United States. doi:10.1520/D4427-18.
Chimner, R. A., & Ewel, K. C. (2005). A tropical freshwater wetland: II. Production, decomposition, and peat formation. Wetlands Ecology and Management, 13(6), 671–684. doi:10.1007/s11273-005-0965-9.
Hodgkins, S. B., Richardson, C. J., Dommain, R., Wang, H., Glaser, P. H., Verbeke, B., Winkler, B. R., Cobb, A. R., Rich, V. I., Missilmani, M., Flanagan, N., Ho, M., Hoyt, A. M., Harvey, C. F., Vining, S. R., Hough, M. A., Moore, T. R., Richard, P. J. H., De La Cruz, F. B., … Chanton, J. P. (2018). Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nature Communications, 9(1), 3640. doi:10.1038/s41467-018-06050-2.
Yogyanta, D. A., Mochtar, N.E., & Zulaika, E. (2019). Acceleration of Decomposition Process by Lignocellulolytic Bacteria and Its Effect on the Physical and Engineering Properties of Kalimantan Fibrous Peat. Proceedings of the Third International Conference on Sustainable Innovation 2019 – Technology and Engineering (IcoSITE 2019), 35-39. doi:10.2991/icosite-19.2019.7.
Mochtar, N. E., Prativi, A., & Yogyanta, D. A. (2024). Behavioral Change of the Bacterially Decomposed Fibrous Tropical Peat Stabilized with Lime CaCO3 and Fly Ash. Advances in Civil Engineering Materials. ICACE 2023, Lecture Notes in Civil Engineering, 466, Springer, Singapore. doi:10.1007/978-981-97-0751-5_70.
MacFarlane, I. C., & Radforth, N. W. (1965). A study of the physical behavior of peat derivatives under compression. Technical Memorandum no. 85, National Research Council of Canada, Ottawa, Canada. doi:10.4224/20337957.
Hoyos-Santillan, J., Lomax, B. H., Large, D., Turner, B. L., Boom, A., Lopez, O. R., & Sjögersten, S. (2015). Getting to the root of the problem: litter decomposition and peat formation in lowland Neotropical peatlands. Biogeochemistry, 126(1–2), 115–129. doi:10.1007/s10533-015-0147-7.
Ratnayake, A. S. (2020). Characteristics of Lowland Tropical Peatlands: Formation, Classification, and Decomposition. Journal of Tropical Forestry and Environment, 10(1). doi:10.31357/jtfe.v10i1.4685.
Travis, K., Izzati Nazra, John Thor, & William Adam. (2023). Analysis of Land Subsidence in Peatlands in the Awareness Area of Pekanbaru, Riau, Indonesia. Journal of Geoscience, Engineering, Environment, and Technology, 8(1), 62–69. doi:10.25299/jgeet.2023.8.1.13461.
Prativi, A., Mochtar, N. E., & Mochtar, I. B. (2024). A Formula for Predicting Primary Settlement of Tropical Highly Organic Soil and Peat in the Field. Civil Engineering Journal (Iran), 10(11), 3493–3507. doi:10.28991/CEJ-2024-010-11-03.
Prativi, A., & Mochtar, N. E. (2024). The Effect of Fiber Content on Long-Term Compression Behavior of Tropical Fibrous Peat. Proceedings of 6th International Conference on Civil Engineering and Architecture, 1, ICCEA 2023. Lecture Notes in Civil Engineering, 530, Springer, Singapore. doi:10.1007/978-981-97-5311-6_23.
Prativi, A., & Mochtar, N. E. (2025). The Effect of Coarse Fiber on Long-Term Compression of Tropical Fibrous Peat in Indonesia. Proceedings of the 4th International Civil Engineering and Architecture Conference, CEAC 2024, Lecture Notes in Civil Engineering, 534, Springer, Singapore. doi:10.1007/978-981-97-5477-9_36.
Price, J. S., Cagampan, J., & Kellner, E. (2005). Assessment of peat compressibility: Is there an easy way? Hydrological Processes, 19(17), 3469–3475. doi:10.1002/hyp.6068.
Edil, T. B., & Mochtar, N. E. (1984). Prediction of peat settlement. In Sedimentation Consolidation Models—Predictions and Validation. American Society of Civil Engineers (ASCE), Reston, United States.
Adams, J. I. (1963). A comparison of field and laboratory consolidation measurements in peat. Proceedings of the Ninth Muskeg Research Conference, 21 may, Ottawa, Canada.
Berry, P. L., & Poskitt, T. J. (1972). The consolidation of peat. Geotechnique, 22(1), 27–52. doi:10.1680/geot.1972.22.1.27.
Edil, T. B., & Dhowian, A. W. (1979). Analysis of long-term compression of peats. Geotechnical Engineering, 10(2), 159-178.
Yamaguchi, H., Ohira, Y., & Kogure, K. (1985). Volume Change Characteristics of Undisturbed Fibrous Peat. Soils and Foundations, 25(2), 119–134. doi:10.3208/sandf1972.25.2_119.
Dhowian, A. W., & Edil, T. B. (1980). Consolidation Behavior of Peats. Geotechnical Testing Journal, 3(3), 105–114. doi:10.1520/GTJ10881J.
Colleselli, F., Cortellazzo, G., & Cola, S. (2000). Laboratory Testing of Italian Peaty Soils. Geotechnics of High Water Content Materials, 226-226–15, ASTM International, Pennsylvania, United States. doi:10.1520/stp14370s.
Fatnanta, F. (2000). Determination of Riau Fibrous Peat Soil Compression Parameters with Constant Rate of Strain Method Consolidation Test (CRS-Consolidation Test). Institut Teknologi Sepuluh Nopember Surabaya, Surabaya. (In Indonesian).
Mochtar, N. E., & Marzuki, A. (2010). Method to Predict Compression Behavior of Tropical Fibrous Peat in The Field. The International Symposium on Lowland Technology (ISLT), 16-18 September, 2010, Saga, Japan.
Gibson, R. E. & Lo, K. Y. (1961). A theory of consolidation for soils exhibiting secondary compression. Norwegian Geotechnical Institute, 41, 1-41.
Umehara, Y., & Zen, K. (1980). Constant Rate of Strain Consolidation for Very Soft Clayey Soils. Soils and Foundations, 20(2), 79–95. doi:10.3208/sandf1972.20.2_79.
Hamilton, J. J., & Crawford, C. B. (2009). Improved Determination of Preconsolidation Pressure of a Sensitive Clay. Papers on Soils 1959 Meetings, 254, 254–271, ASTM International, Pennsylvania, United States. doi:10.1520/stp44323s.
Mesri, G., & Feng, T. W. (2019). Constant rate of strain consolidation testing of soft clays and fibrous peats. Canadian Geotechnical Journal, 56(10), 1526–1533. doi:10.1139/cgj-2018-0259.
De Guzman, E. M. B., & Alfaro, M. C. (2018). Geotechnical Properties of Fibrous and Amorphous Peats for the Construction of Road Embankments. Journal of Materials in Civil Engineering, 30(7), 04018149. doi:10.1061/(asce)mt.1943-5533.0002325.
Feng, T. W. (2010). Some observations on the oedometric consolidation strain rate behaviors of saturated clay. Journal of GeoEngineering, 5(1), 1–7. doi:10.6310/jog.2010.5(1).1.
ASTM D4186/D4186M-20e1. (2024). Standard Test Method for One-Dimensional Consolidation Properties of Saturated Cohesive Soils Using Controlled-Strain Loading. ASTM International, Pennsylvania, United States. doi:10.1520/D4186_D4186M-20E01.
Fox, P. J., Pu, H.-F., & Christian, J. T. (2014). Evaluation of Data Analysis Methods for the CRS Consolidation Test. Journal of Geotechnical and Geoenvironmental Engineering, 140(6), 04014020. doi:10.1061/(asce)gt.1943-5606.0001103.
Lengkeek, H. J., Brunetti, M., & de Jong, A. K. (2014). The use of anisotropically consolidated triaxial, direct simple shear and constant rate of strain tests in determining the strength parameters of organic soft soil. Proceedings of Soft Soils, 20-23 October, 2014, Bandung, Indonesia.
ASTM D2974-20e1. (2025). Standard Test Methods for Determining the Water (Moisture) Content, Ash Content, and Organic Material of Peat and Other Organic Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D2974-20E01.
ASTM D1997-20. (2020). Standard Test Method for Laboratory Determination of the Fiber Content of Peat and Organic Soils by Dry Mass. ASTM International, Pennsylvania, United States. doi:10.1520/D1997-20.
Day, J. H., Rennie, P. J., Stanek, W., & Raymond, G. P. (1979). Peat Testing Manual, Technical Memorandum No. 125, Ottawa, Canada.
ASTM D2435-04. (2011). Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading. ASTM International, Pennsylvania, United States. doi:10.1520/D2435-04.
Jia, R., Chai, J., & Hino, T. (2013). Interpretation of coefficient of consolidation from CRS test results. Geomechanics and Engineering, 5(1), 57–70. doi:10.12989/gae.2013.5.1.057.
Leroueil, S., Kabbaj, M., Tavenas, F., & Bouchard, R. (1985). Stress-strain-strain rate relation for the compressibility of sensitive natural clays. Geotechnique, 35(2), 159–180. doi:10.1680/geot.1985.35.2.159.
DÃaz-RodrÃguez, J. A., Tonix, W. R., & Carrizales, P. M. (2017). Constant rate of strain consolidation of Maxico City Soil. The 19th International Conference on Soil Mechanics and Geotechnical Engineering (ICSMGE 2017), 17-21 September, 2017, Seoul, Korea.
Holm, D. (2016). Influence of strain rate in CRS tests: A laboratory study of three Swedish clays. Master Thesis, KTH Royal Institute of Technology, Stockholm, Sweden.
Prativi, A., & Mochtar, N. E. (2024). Application of Lan model to predict compression behavior of tropical fibrous peat soils in Palangkaraya, Indonesia. Proceedings of the 4th International Conference on Green Civil and Environmental Engineering (GCEE 2023), 3110, 020056. doi:10.1063/5.0204846.
Wissa, A. E. Z., Christian, J. T., Davis, E. H., & Heiberg, S. (1971). Consolidation at Constant Rate of Strain. Journal of the Soil Mechanics and Foundations Division, 97(10), 1393–1413. doi:10.1061/jsfeaq.0001679.
Carter, M., & Bentley, S. P. (1991). Correlations of soil properties. John Wiley and Sons, Hoboken, United States.
Casagrande, A., & Fadum, R. E. (1940). Notes on soil testing for engineering purposes. Harvard Soil Mechanics Series, No. 8, Cambridge, United States.
Mesri, G., & Choi, Y. K. (1987). Settlement analysis of embankments on soft clays. Journal of Geotechnical Engineering, 113(9), 1076–1085. doi:10.1061/(ASCE)0733-9410(1987)113:9(1076).
Mesri, G., Huvaj, N., Vardhanabhuti, B., & Ho, Y. H. (2005). Excess porewater pressures during secondary compression. Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, 12-16 September, 2005, Osaka, Japan.
DOI: 10.28991/CEJ-2025-011-05-03
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Ayu Prativi

This work is licensed under a Creative Commons Attribution 4.0 International License.