An Innovative Design of Strip and Circular Footings on Sand Surface: Stress–Density Framework

Mohamed I. Ramadan

Abstract


The bearing capacity of shallow foundations subjected to vertical centric loads has been extensively investigated. Despite the variability in the bearing capacity factor as proposed by different methodologies, the classical solution remains dominant in design codes. Critical variables affecting the bearing capacity of sand encompass sand particle morphology, footing width or diameter (B or D), mean effective stress level (p'), and sand relative density (Dr). Different sand types may exhibit distinct mobilization friction angles (ϕm) at the same Dr and p', resulting in varied stress-strain behaviors. Thus, the actual bearing capacity may not be accurately reflected by estimates of 𝑁𝛾 derived from a constant peak friction angle (ϕp) value. In this study, a Three-Dimensional Finite Element Model (3D-FEM) has been applied to both strip and circular footings, employing a hypoplastic constitutive sand model to replicate sand behavior. The model efficiently replicates the compression and shear behavior of sand across a wide range of confining pressures and densities. A comprehensive parametric analysis has been conducted, encompassing a broad range of parameter variations. The principal objective is to present an innovative design approach concerning the bearing capacity of footings for diverse sand characteristics across an extensive array of sand properties. Additionally, a correlation has been established between the bearing capacity factors for strip and circular footings.

 

Doi: 10.28991/CEJ-2025-011-03-03

Full Text: PDF


Keywords


Bearing Capacity; Strip Footing; Circular Footing; Sand; Finite Element; Hypoplastic Model.

References


Altaee, A., & Fellenius, B. H. (1995). Modeling the performance of the Molikpaq: Reply. Canadian Geotechnical Journal, 32(5), 924–926. doi:10.1139/t95-091.

Janabi, F. H., Raja, R. A., Sakleshpur, V. A., Prezzi, M., & Salgado, R. (2023). Experimental Study of Shape and Depth Factors and Deformations of Footings in Sand. Journal of Geotechnical and Geoenvironmental Engineering, 149(2), 04022128. doi:10.1061/jggefk.gteng-10874.

Bolton, M. D. (1986). The strength and dilatancy of sands. Geotechnique, 36(1), 65–78. doi:10.1680/geot.1986.36.1.65.

Okahara, M. (1988). Centrifuge tests on scale effect of bearing capacity. Proceedings of the 42nd Annual Conference of the Japan Society of Civil Engineers, Tokyo, Japan.

Altaee, A., & Fellenius, B. H. (1994). Physical modeling in sand. Canadian Geotechnical Journal, 31(3), 420–431. doi:10.1139/t94-049.

Tatsuoka, F. (1991). Progressive failure and particle size effect in bearing capacity of a footing on sand. Proc. Geotechnical Engineering Congress, 10-12 June, 1991, Boulder, United States.

Okamura, M., Takemura, J., & Kimura, T. (1997). Centrifuge Model Tests on Bearing Capacity and Deformation of Sand Layer Overlying Clay. Soils and Foundations, 37(1), 73–88. doi:10.3208/sandf.37.73.

Okamura, M., Takemura, J., & Kimura, T. (1993). A Study on Bearing Capacities of Shallow Footings on Sand. Doboku Gakkai Ronbunshu, 1993(463), 85–94. doi:10.2208/jscej.1993.463_85.

Diaz-Segura, E. G. (2013). Assessment of the range of variation of Nγ from 60 estimation methods for footings on sand. Canadian Geotechnical Journal, 50(7), 793–800. doi:10.1139/cgj-2012-0426.

Santamarina, J. C., & Cho, G. C. (2001). Determination of Critical State Parameters in Sandy Soils - Simple Procedure. Geotechnical Testing Journal, 24(2), 185–192. doi:10.1520/gtj11338j.

Sadrekarimi, A., & Olson, S. M. (2011). Critical state friction angle of sands. Géotechnique, 61(9), 771–783. doi:10.1680/geot.9.p.090.

Jefferies, M., & Been, K. (2015). Soil liquefaction: a critical state approach. CRC Press, London, United Kingdom. doi:10.1201/b19114.

Yang, J., & Luo, X. D. (2018). The critical state friction angle of granular materials: does it depend on grading? Acta Geotechnica, 13(3), 535–547. doi:10.1007/s11440-017-0581-x.

Raja, R. A., Sakleshpur, V. A., Prezzi, M., & Salgado, R. (2023). Effect of Relative Density and Particle Morphology on the Bearing Capacity and Collapse Mechanism of Strip Footings in Sand. Journal of Geotechnical and Geoenvironmental Engineering, 149(8), 04023052. doi:10.1061/jggefk.gteng-11324.

De Beer, E. E. (1965). Bearing capacity and settlement of shallow foundations on sand. Bearing Capacity and Settlement of Foundations: Proceedings of a Symposium, 5-6 April, Duke University, Durham, United Kingdom.

Chakraborty, D., & Kumar, J. (2013). Dependency of Nγ on footing diameter for circular footings. Soils and Foundations, 53(1), 173–180. doi:10.1016/j.sandf.2012.12.013.

Kumar, J., & Khatri, V. N. (2008). Effect of footing width on Ng. Canadian Geotechnical Journal, 45(12), 1673–1684. doi:10.1139/T08-113.

Jahanandish, M., Veiskarami, M., & Ghahramani, A. (2010). Effect of Stress Level on the Bearing Capacity Factor, Nγ, by the ZEL Method. KSCE Journal of Civil Engineering, 14(5), 709–723. doi:10.1007/s12205-010-0866-1.

Veiskarami, M., Jahanandish, M., & Ghahramani, A. (2010). Application of the Zel Method in the Prediction of Foundation Bearing Capacity Considering the Stress Level Effect. Soil Mechanics and Foundation Engineering, 47(3), 75–85. doi:10.1007/s11204-010-9092-6.

Yamaguchi, H., Kimura, T., & Fuji-i, N. (1976). on the Influence of Progressive Failure on the Bearing Capacity of Shallow Foundations in Dense Sand. Soils and Foundations, 16(4), 11–22. doi:10.3208/sandf1972.16.4_11.

Kamalzadeh, A., & Pender, M. J. (2023). Dilatancy Effects on Surface Foundations on Dry Sand. International Journal of Geomechanics, 23(3), 04022302. doi:10.1061/ijgnai.gmeng-7826.

Zhu, F., Clark, J. I., & Phillips, R. (2001). Scale Effect of Strip and Circular Footings Resting on Dense Sand. Journal of Geotechnical and Geoenvironmental Engineering, 127(7), 613–621. doi:10.1061/(asce)1090-0241(2001)127:7(613).

Perkins, S. W., & Madson, C. R. (2000). Bearing Capacity of Shallow Foundations on Sand: A Relative Density Approach. Journal of Geotechnical and Geoenvironmental Engineering, 126(6), 521–530. doi:10.1061/(asce)1090-0241(2000)126:6(521).

Loukidis, D., & Salgado, R. (2011). Effect of relative density and stress level on the bearing capacity of footings on sand. Geotechnique, 61(2), 107–119. doi:10.1680/geot.8.P.150.3771.

Ueno, K., Miura, K., & Maeda, Y. (1998). Prediction of ultimate bearing capacity of surface footings with regard to size effects. Soils and Foundations, 38(3), 165–178. doi:10.3208/sandf.38.3_165.

Ueno, K., Miura, K., Kusakabe, O., & Nishimura, M. (2001). Reappraisal of Size Effect of Bearing Capacity from Plastic Solution. Journal of Geotechnical and Geoenvironmental Engineering, 127(3), 275–281. doi:10.1061/(asce)1090-0241(2001)127:3(275).

Jitchaijaroen, W., Ranjan Kumar, D., Keawsawasvong, S., Wipulanusat, W., & Jamsawang, P. (2024). Hybrid artificial neural network models for bearing capacity evaluation of a strip footing on sand based on Bolton failure criterion. Transportation Geotechnics, 48. doi:10.1016/j.trgeo.2024.101347.

Liu, Y., & Liang, Y. (2024). Integrated machine learning for modeling bearing capacity of shallow foundations. Scientific Reports, 14(1), 8319. doi:10.1038/s41598-024-58534-5.

Alzabeebee, S., Alshkane, Y. M. A., & Keawsawasvong, S. (2023). New Model to Predict Bearing Capacity of Shallow Foundations Resting on Cohesionless Soil. Geotechnical and Geological Engineering, 41(6), 3531–3547. doi:10.1007/s10706-023-02472-y.

Dehghanbanadaki, A., & Motamedi, S. (2024). Bearing capacity prediction of shallow foundation on sandy soils: a comparative study of analytical, FEM, and machine learning approaches. Multiscale and Multidisciplinary Modeling, Experiments and Design, 7(2), 1293–1310. doi:10.1007/s41939-023-00280-8.

Lawal, A. I., & Kwon, S. (2023). Development of mathematically motivated hybrid soft computing models for improved predictions of ultimate bearing capacity of shallow foundations. Journal of Rock Mechanics and Geotechnical Engineering, 15(3), 747–759. doi:10.1016/j.jrmge.2022.04.005.

Kumar, M., Kumar, V., Biswas, R., Samui, P., Kaloop, M. R., Alzara, M., & Yosri, A. M. (2022). Hybrid ELM and MARS-Based Prediction Model for Bearing Capacity of Shallow Foundation. Processes, 10(5), 1013. doi:10.3390/pr10051013.

hahin, M. (2024). Progression of artificial intelligence/machine learning in geotechnical engineering. Machine Learning and Data Science in Geotechnics, 1(1), 1–5. doi:10.1108/mlag-10-2024-0010.

Igoe, D., Zahedi, P., & Soltani-Jigheh, H. (2024). Predicting the Compression Capacity of Screw Piles in Sand Using Machine Learning Trained on Finite Element Analysis. Geotechnics, 4(3), 807–823. doi:10.3390/geotechnics4030042.

Alipour, M. J., & Wu, W. (2024). A Simple Hypoplastic Model for Sand Under Cyclic Loading. Recent Geotechnical Research at BOKU, Springer Series in Geomechanics and Geoengineering, Springer, Cham, Switzerland. doi:10.1007/978-3-031-52159-1_1.

Woodward, P. K., Nesnas, K., & Griffiths, D. V. (2000). Advanced numerical modelling of footings on granular soils. Proceedings of Sessions of Geo-Denver 2000 - Numerical Methods in Geotechnical Engineering, GSP 96, 284, 88–101. doi:10.1061/40502(284)7.

Ramadan, M. I., & Meguid, M. (2020). Behavior of cantilever secant pile wall supporting excavation in sandy soil considering pile-pile interaction. Arabian Journal of Geosciences, 13(12). doi:10.1007/s12517-020-05483-8.

Gudehus, G., Amorosi, A., Gens, A., Herle, I., Kolymbas, D., Mašín, D., Wood, D. M., Niemunis, A., Nova, R., Pastor, M., Tamagnini, C., & Viggiani, G. (2008). The soilmodels.info project. International Journal for Numerical and Analytical Methods in Geomechanics, 32(12), 1571–1572. doi:10.1002/nag.675.

Mašín, D., & Duque, J. (2023). Excavation of Komořany Tunnel in Sand: A Case Study. International Journal of Geomechanics, 23(8). doi:10.1061/ijgnai.gmeng-8591.

Qiu, G., & Grabe, J. (2012). Numerical investigation of bearing capacity due to spudcan penetration in sand overlying clay. Canadian Geotechnical Journal, 49(12), 1393–1407. doi:10.1139/T2012-085.

Qiu, G., & Henke, S. (2011). Controlled installation of spudcan foundations on loose sand overlying weak clay. Marine Structures, 24(4), 528–550. doi:10.1016/j.marstruc.2011.06.005.

Wichtmann, T., & Triantafyllidis, T. (2016). An experimental database for the development, calibration and verification of constitutive models for sand with focus to cyclic loading: part I—tests with monotonic loading and stress cycles. Acta Geotechnica, 11(4), 739–761. doi:10.1007/s11440-015-0402-z.

Mašín, D. (2019). Modelling of Soil Behaviour with Hypoplasticity. In Springer Series in Geomechanics and Geoengineering. Springer International Publishing, Cham, Switzerland. doi:10.1007/978-3-030-03976-9.

Ng, C. W. W., Boonyarak, T., & Mašín, D. (2013). Three-dimensional centrifuge and numerical modeling of the interaction between perpendicularly crossing tunnels. Canadian Geotechnical Journal, 50(9), 935–946. doi:10.1139/cgj-2012-0445.

Wegener, D., & Herle, I. (2012). On stiffness at small strains in the context of hypoplasticity. Geotechnik, 35(4), 229–235. doi:10.1002/gete.201200006.

Chow, S. H., Roy, A., Herduin, M., Heins, E., King, L., Bienen, B., ... & Cassidy, M. (2019). Characterisation of UWA superfine silica sand. GEO 18844, Centre for Offshore Foundation Systems, Crawley, Australia.

Niemunis, A., & Herle, I. (1997). Hypoplastic model for cohesionless soils with elastic strain range. Mechanics of Cohesive-Frictional Materials, 2(4), 279–299. doi:10.1002/(SICI)1099-1484(199710)2:4<279::AID-CFM29>3.0.CO;2-8.

Herle, I., & Gudehus, G. (1999). Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mechanics of Cohesive-Frictional Materials, 4(5), 461–486. doi:10.1002/(SICI)1099-1484(199909)4:5<461::AID-CFM71>3.0.CO;2-P.

Yu, L. Q., Wang, L. Z., Guo, Z., Bhattacharya, S., Nikitas, G., Li, L. L., & Xing, Y. L. (2015). Long-term dynamic behavior of monopile supported offshore wind turbines in sand. Theoretical and Applied Mechanics Letters, 5(2), 80–84. doi:10.1016/j.taml.2015.02.003.

Hong, Y., Koo, C. H., Zhou, C., Ng, C. W. W., & Wang, L. Z. (2017). Small Strain Path-Dependent Stiffness of Toyoura Sand: Laboratory Measurement and Numerical Implementation. International Journal of Geomechanics, 17(1), 1–10. doi:10.1061/(asce)gm.1943-5622.0000664.

Chen, J., Dong, Y., & Whittle, A. J. (2020). Prediction and Evaluation of Size Effects for Surface Foundations on Sand. Journal of Geotechnical and Geoenvironmental Engineering, 146(5), 1–13. doi:10.1061/(asce)gt.1943-5606.0002237.

Chen, Y., Zhao, W., Han, J., & Jia, P. (2019). A CEL study of bearing capacity and failure mechanism of strip footing resting on c-φ soils. Computers and Geotechnics, 111, 126–136. doi:10.1016/j.compgeo.2019.03.015.

Morikage, A., Kusakabe, O., Yamaguchi, H., & Kobayanshi, T. (1990). Centrifuge model tests on bearing capacity of circular and rectangular footings on dry sand. Proceedings of the 25th Japan Annual Conference of Soil Mechanics and Foundation Engineering, Tokyo, Japan.

Kusakabe, O. (1991). Experiment and analysis on the scale effect of Nγ for circular and rectangular footings. Proceedings of the International Conference Centrifuge, 13-14 June, 1991, Boulder, United States.

Clark, J. I. (1998). The settlement and bearing capacity of very large foundations on strong soils: 1996 R.M. Hardy keynote address. Canadian Geotechnical Journal, 35(1), 131–145. doi:10.1139/t97-070.

Zhu, F. (1998). Centrifuge modelling and numerical analysis of bearing capacity of ring foundations on sand. PhD Thesis, Memorial University of Newfoundland, St. John's, Canada.

Govoni, L., Gourvenec, S., & Gottardi, G. (2010). Centrifuge modelling of circular shallow foundations on sand. International Journal of Physical Modelling in Geotechnics, 10(2), 35–46. doi:10.1680/ijpmg.2010.10.2.35.

Cerato, A. B., & Lutenegger, A. J. (2007). Scale Effects of Shallow Foundation Bearing Capacity on Granular Material. Journal of Geotechnical and Geoenvironmental Engineering, 133(10), 1192–1202. doi:10.1061/(asce)1090-0241(2007)133:10(1192).

Ziccarelli, M., Valore, C., Muscolino, S. R., & Fioravante, V. (2017). Centrifuge tests on strip footings on sand with a weak layer. Geotechnical Research, 4(1), 47–64. doi:10.1680/jgere.16.00021.

Kutter, B. L., Abghari, A., & Cheney, J. A. (1989). Strength parameters for bearing capacity of sand. Journal of Geotechnical Engineering, 115(12), 1818–1819. doi:10.1061/(ASCE)0733-9410(1989)115:12(1818).

Jensen, M. R., & Lehane, B. (2020). The effects of sand grading on the bearing capacity of surface foundations. 4th European Conference on Physical Modelling in Geotechnics. Lulea University of Technology, 6-8 September, 2020, Lulea, Sweden.

De Beer, E. E. (1970). Experimental determination of the shape factors and the bearing capacity factors of sand. Geotechnique, 20(4), 387–411. doi:10.1680/geot.1970.20.4.387.

Winterkorn, H. F., & Fang, H. Y. (1991). Soil technology and engineering properties of soils. Foundation engineering handbook, 88-143. Springer, Boston, United States. doi:10.1007/978-1-4615-3928-5_3.

de Beer, E. E. (1970). Experimental Determination of the Shape Factors and the Bearing Capacity Factors of Sand. Géotechnique, 20(4), 387–411. doi:10.1680/geot.1970.20.4.387.

Shafiqul Islam, M., Rokonuzzaman, M., & Sakai, T. (2017). Shape Effect of Square and Circular Footing under Vertical Loading: Experimental and Numerical Studies. International Journal of Geomechanics, 17(9), 06017014. doi:10.1061/(asce)gm.1943-5622.0000965.

Lyamin, A. V., Salgado, R., Sloan, S. W., & Prezzi, M. (2007). Two- And three-dimensional bearing capacity of footings in sand. Geotechnique, 57(8), 647–662. doi:10.1680/geot.2007.57.8.647.

Ueno, K., Nakatomi, T., & Mito, K. (1994). Influence of initial conditions on bearing characteristics of sand. International conference centrifuge 94, 31 August-2 September, 1994, Singapore.

Riemer, M. F., Seed, R. B., Nicholson, P. G., & Jong, H. L. (1990). Steady state testing of loose sands: Limiting minimum density. Journal of Geotechnical Engineering, 116(2), 332–339. doi:10.1061/(ASCE)0733-9410(1990)116:2(332).

Kokkali, P., Anastasopoulos, I., Abdoun, T., & Gazetas, G. (2015). Static and cyclic rocking on sand: Centrifuge versus reduced-scale LG experiments. Geotechnical Earthquake Engineering - Geotechnique Symposium in Print 2015, 64, 155–170. doi:10.1680/geot.14.P.064.

White, D. J., Teh, K. L., Leung, C. F., & Chow, Y. K. (2008). A comparison of the bearing capacity of flat and conical circular foundations on sand. Geotechnique, 58(10), 781–792. doi:10.1680/geot.2008.3781.

Hleibieh, J., & Herle, I. (2019). The performance of a hypoplastic constitutive model in predictions of centrifuge experiments under earthquake conditions. Soil Dynamics and Earthquake Engineering, 122, 310–317. doi:10.1016/j.soildyn.2018.10.031.

Kimura, T., Kusakabe, O., & Saitoh, K. (1985). Geotechnical Model Tests of Bearing in a Centrifuge Capacity. Geotechnique, 35(1), 33–45. doi:10.1680/geot.1985.35.1.33.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-03-03

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Mohamed I Ramadan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message