Mechanical Properties of Cement-Stabilized Sandy Soils Modified with Consoil
Downloads
Doi: 10.28991/CEJ-2025-011-01-011
Full Text: PDF
Downloads
[2] Yu, H., Joshi, P., Lau, C., & Ng, K. (2024). Novel application of sustainable coal-derived char in cement soil stabilization. Construction and Building Materials, 414, 134960. doi:10.1016/j.conbuildmat.2024.134960.
[3] Rasheed, S. E., Fattah, M. Y., Hassan, W. H., & Hafez, M. (2024). Strength and Durability Characteristics of Sustainable Pavement Base Course Stabilized with Cement Bypass Dust and Spent Fluid Catalytic Cracking Catalyst. Infrastructures, 9(12), 217. doi:10.3390/infrastructures9120217.
[4] Abdolvand, Y., & Sadeghiamirshahidi, M. (2024). Soil stabilization with gypsum: A review. Journal of Rock Mechanics and Geotechnical Engineering. doi:10.1016/j.jrmge.2024.02.007.
[5] Anburuvel, A. (2024). The Engineering Behind Soil Stabilization with Additives: A State-of-the-Art Review. Geotechnical and Geological Engineering, 42(1), 1–42. doi:10.1007/s10706-023-02554-x.
[6] Eisa, M. S., Basiouny, M. E., Mohamady, A., & Mira, M. (2022). Improving Weak Subgrade Soil Using Different Additives. Materials, 15(13). doi:10.3390/ma15134462.
[7] Chen, F. H. (1988). Foundation on Expansive Soils, Amsterdam. Elsevier Scientific Publication Company, New York, United Sates.
[8] Oliveira, P. C. (2003). Contribution to the study of the deep recycling technique in the recovery of flexible pavements. Master Thesis, Universidade Estadual de Campinas-UNICAMP, Campinas, Brazil. (In Portuguese).
[9] Fedrigo, W., Núñez, W. P., & Visser, A. T. (2020). A review of full-depth reclamation of pavements with Portland cement: Brazil and abroad. Construction and Building Materials, 262. doi:10.1016/j.conbuildmat.2020.120540.
[10] Wu, R., Louw, S., & Jones, D. (2015). Effects of binder, curing time, temperature, and trafficking on moduli of stabilized and unstabilized full-depth reclamation materials. Transportation Research Record, 2524, 11–19. doi:10.3141/2524-02.
[11] Wild, S., Kinuthia, J. M., Jones, G. I., & Higgins, D. D. (1998). Effects of partial substitution of lime with ground granulated blast furnace slag (GGBS) on the strength properties of lime-stabilised sulphate-bearing clay soils. Engineering Geology, 51(1), 37–53. doi:10.1016/S0013-7952(98)00039-8.
[12] Dimter, S., Zagvozda, M., Tonc, T., & Š imun, M. (2022). Evaluation of Strength Properties of Sand Stabilized with Wood Fly Ash (WFA) and Cement. Materials, 15(9). doi:10.3390/ma15093090.
[13] Horpibulsuk, S., Rachan, R., Chinkulkijniwat, A., Raksachon, Y., & Suddeepong, A. (2010). Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Construction and Building Materials, 24(10), 2011–2021. doi:10.1016/j.conbuildmat.2010.03.011.
[14] Xiao, F., Yao, S., Wang, J., Li, X., & Amirkhanian, S. (2018). A literature review on cold recycling technology of asphalt pavement. Construction and Building Materials, 180, 579–604. doi:10.1016/j.conbuildmat.2018.06.006.
[15] Jones, D., Wu, R., & Louw, S. (2015). Comparison of full-depth reclamation with Portland cement and full-depth reclamation with no stabilizer in accelerated loading test. Transportation Research Record, 2524, 133–142. doi:10.3141/2524-13.
[16] Amhadi, T. S., & Assaf, G. J. (2019). Assessment of strength development of cemented desert soil. International Journal of Low-Carbon Technologies, 14(4), 543–549. doi:10.1093/ijlct/ctz047.
[17] Modarres, A., & Nosoudy, Y. M. (2015). Clay stabilization using coal waste and lime - Technical and environmental impacts. Applied Clay Science, 116–117, 281–288. doi:10.1016/j.clay.2015.03.026.
[18] ASTM D854-23. (2023). Standard Test Methods for Specific Gravity of Soil Solids by the Water Displacement Method. ASTM international, Pennsylvania, United States. doi:10.1520/D0854-23.
[19] ASTM D698-12. (2021). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM international, Pennsylvania, United States. doi:10.1520/D0698-12R21.
[20] ASTM D2974-20e1. (2020). Standard Test Methods for Determining the Water (Moisture) Content, Ash Content, and Organic Material of Peat and Other Organic Soils. ASTM international, Pennsylvania, United States. doi:10.1520/D2974-20E01.
[21] ASTM D6913-04(2009)e1. (2017). Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. ASTM international, Pennsylvania, United States. 10.1520/D6913-04R09E01.
[22] Wang, D. X., Abriak, N. E., Zentar, R., & Xu, W. (2012). Solidification/stabilization of dredged marine sediments for road construction. Environmental Technology, 33(1), 95–101. doi:10.1080/09593330.2011.551840.
[23] Rios, S., Viana da Fonseca, A., & Baudet, B. A. (2014). On the shearing behaviour of an artificially cemented soil. Acta Geotechnica, 9(2), 215–226. doi:10.1007/s11440-013-0242-7.
[24] Goodarzi, A. R., & Salimi, M. (2015). Stabilization treatment of a dispersive clayey soil using granulated blast furnace slag and basic oxygen furnace slag. Applied Clay Science, 108, 61–69. doi:10.1016/j.clay.2015.02.024.
[25] Jha, A. K., & Sivapullaiah, P. V. (2015). Mechanism of improvement in the strength and volume change behavior of lime stabilized soil. Engineering Geology, 198, 53–64. doi:10.1016/j.enggeo.2015.08.020.
[26] Pourakbar, S., Asadi, A., Huat, B. B. K., & Fasihnikoutalab, M. H. (2015). Stabilization of clayey soil using ultrafine palm oil fuel ash (POFA) and cement. Transportation Geotechnics, 3, 24–35. doi:10.1016/j.trgeo.2015.01.002.
[27] Ding, M., Zhang, F., Ling, X., & Lin, B. (2018). Effects of freeze-thaw cycles on mechanical properties of polypropylene Fiber and cement stabilized clay. Cold Regions Science and Technology, 154, 155–165. doi:10.1016/j.coldregions.2018.07.004.
[28] Chew, S. H., Kamruzzaman, A. H. M., & Lee, F. H. (2004). Physicochemical and Engineering Behavior of Cement Treated Clays. Journal of Geotechnical and Geoenvironmental Engineering, 130(7), 696–706. doi:10.1061/(asce)1090-0241(2004)130:7(696).
[29] Taylor, H. F. W. (1997). Cement chemistry. Thomas Telford Ltd., London, United Kingdom doi:10.1680/cc.25929.
[30] Mehta, P.K. and Monteiro, P.J.M. (2006) Concrete: Microstructure, Properties, and Materials (3rd Ed.). McGraw-Hill, New York, United Sates.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.