Mechanical Properties of Cement-Stabilized Sandy Soils Modified with Consoil

Mustafa I. Ahmed, Alaa H. Abed

Abstract


This study investigates the mechanical enhancement of sandy soils through cement stabilization modified with Consoil, targeting improved pavement substructure performance. Unconfined compressive strength (UCS) tests were conducted on samples with varying cement contents (3%, 6%, 9%), Consoil dosages (0%, 5%, 10%, 15%, 20% by cement weight), and curing periods (3, 7, 28, 90 days). Field Emission Scanning Electron Microscopy and X-Ray Diffraction analyses complemented mechanical testing to understand strengthening mechanisms. Results demonstrated that 15% Consoil consistently optimized strength development across all cement contents, with 9% cement and 15% Consoil achieving peak 90-day UCS of 17.74 MPa, representing a 67% increase over control samples. Microstructural analysis revealed progressive matrix refinement with increasing Consoil content, while XRD indicated enhanced pozzolanic activity through calcium hydroxide consumption. The study introduces Consoil as an effective stabilization additive, establishing optimal dosage rates and demonstrating significant strength improvements through synergistic cement-Consoil interactions. The findings provide new insights into strength enhancement mechanisms in Consoil-modified cement-stabilized soils, offering practical guidelines for designing high-performance pavement substructures. The research contributes to sustainable construction practices by optimizing cement usage through Consoil incorporation.

 

Doi: 10.28991/CEJ-2025-011-01-011

Full Text: PDF


Keywords


Soil Stabilization; Cement-Stabilized Soil; Consoil; Unconfined Compressive Strength; Pavement Substructure; Pozzolanic Reaction; Microstructural Analysis; Optimum Moisture Content.

References


Sukmak, G., Sukmak, P., Horpibulsuk, S., Phunpeng, V., & Arulrajah, A. (2024). An approach for strength development assessment of cement-stabilized soils with various sand and fine contents. Transportation Geotechnics, 48, 101323. doi:10.1016/j.trgeo.2024.101323.

Yu, H., Joshi, P., Lau, C., & Ng, K. (2024). Novel application of sustainable coal-derived char in cement soil stabilization. Construction and Building Materials, 414, 134960. doi:10.1016/j.conbuildmat.2024.134960.

Rasheed, S. E., Fattah, M. Y., Hassan, W. H., & Hafez, M. (2024). Strength and Durability Characteristics of Sustainable Pavement Base Course Stabilized with Cement Bypass Dust and Spent Fluid Catalytic Cracking Catalyst. Infrastructures, 9(12), 217. doi:10.3390/infrastructures9120217.

Abdolvand, Y., & Sadeghiamirshahidi, M. (2024). Soil stabilization with gypsum: A review. Journal of Rock Mechanics and Geotechnical Engineering. doi:10.1016/j.jrmge.2024.02.007.

Anburuvel, A. (2024). The Engineering Behind Soil Stabilization with Additives: A State-of-the-Art Review. Geotechnical and Geological Engineering, 42(1), 1–42. doi:10.1007/s10706-023-02554-x.

Eisa, M. S., Basiouny, M. E., Mohamady, A., & Mira, M. (2022). Improving Weak Subgrade Soil Using Different Additives. Materials, 15(13). doi:10.3390/ma15134462.

Chen, F. H. (1988). Foundation on Expansive Soils, Amsterdam. Elsevier Scientific Publication Company, New York, United Sates.

Oliveira, P. C. (2003). Contribution to the study of the deep recycling technique in the recovery of flexible pavements. Master Thesis, Universidade Estadual de Campinas-UNICAMP, Campinas, Brazil. (In Portuguese).

Fedrigo, W., Núñez, W. P., & Visser, A. T. (2020). A review of full-depth reclamation of pavements with Portland cement: Brazil and abroad. Construction and Building Materials, 262. doi:10.1016/j.conbuildmat.2020.120540.

Wu, R., Louw, S., & Jones, D. (2015). Effects of binder, curing time, temperature, and trafficking on moduli of stabilized and unstabilized full-depth reclamation materials. Transportation Research Record, 2524, 11–19. doi:10.3141/2524-02.

Wild, S., Kinuthia, J. M., Jones, G. I., & Higgins, D. D. (1998). Effects of partial substitution of lime with ground granulated blast furnace slag (GGBS) on the strength properties of lime-stabilised sulphate-bearing clay soils. Engineering Geology, 51(1), 37–53. doi:10.1016/S0013-7952(98)00039-8.

Dimter, S., Zagvozda, M., Tonc, T., & Šimun, M. (2022). Evaluation of Strength Properties of Sand Stabilized with Wood Fly Ash (WFA) and Cement. Materials, 15(9). doi:10.3390/ma15093090.

Horpibulsuk, S., Rachan, R., Chinkulkijniwat, A., Raksachon, Y., & Suddeepong, A. (2010). Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Construction and Building Materials, 24(10), 2011–2021. doi:10.1016/j.conbuildmat.2010.03.011.

Xiao, F., Yao, S., Wang, J., Li, X., & Amirkhanian, S. (2018). A literature review on cold recycling technology of asphalt pavement. Construction and Building Materials, 180, 579–604. doi:10.1016/j.conbuildmat.2018.06.006.

Jones, D., Wu, R., & Louw, S. (2015). Comparison of full-depth reclamation with Portland cement and full-depth reclamation with no stabilizer in accelerated loading test. Transportation Research Record, 2524, 133–142. doi:10.3141/2524-13.

Amhadi, T. S., & Assaf, G. J. (2019). Assessment of strength development of cemented desert soil. International Journal of Low-Carbon Technologies, 14(4), 543–549. doi:10.1093/ijlct/ctz047.

Modarres, A., & Nosoudy, Y. M. (2015). Clay stabilization using coal waste and lime - Technical and environmental impacts. Applied Clay Science, 116–117, 281–288. doi:10.1016/j.clay.2015.03.026.

ASTM D854-23. (2023). Standard Test Methods for Specific Gravity of Soil Solids by the Water Displacement Method. ASTM international, Pennsylvania, United States. doi:10.1520/D0854-23.

ASTM D698-12. (2021). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM international, Pennsylvania, United States. doi:10.1520/D0698-12R21.

ASTM D2974-20e1. (2020). Standard Test Methods for Determining the Water (Moisture) Content, Ash Content, and Organic Material of Peat and Other Organic Soils. ASTM international, Pennsylvania, United States. doi:10.1520/D2974-20E01.

ASTM D6913-04(2009)e1. (2017). Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. ASTM international, Pennsylvania, United States. 10.1520/D6913-04R09E01.

Wang, D. X., Abriak, N. E., Zentar, R., & Xu, W. (2012). Solidification/stabilization of dredged marine sediments for road construction. Environmental Technology, 33(1), 95–101. doi:10.1080/09593330.2011.551840.

Rios, S., Viana da Fonseca, A., & Baudet, B. A. (2014). On the shearing behaviour of an artificially cemented soil. Acta Geotechnica, 9(2), 215–226. doi:10.1007/s11440-013-0242-7.

Goodarzi, A. R., & Salimi, M. (2015). Stabilization treatment of a dispersive clayey soil using granulated blast furnace slag and basic oxygen furnace slag. Applied Clay Science, 108, 61–69. doi:10.1016/j.clay.2015.02.024.

Jha, A. K., & Sivapullaiah, P. V. (2015). Mechanism of improvement in the strength and volume change behavior of lime stabilized soil. Engineering Geology, 198, 53–64. doi:10.1016/j.enggeo.2015.08.020.

Pourakbar, S., Asadi, A., Huat, B. B. K., & Fasihnikoutalab, M. H. (2015). Stabilization of clayey soil using ultrafine palm oil fuel ash (POFA) and cement. Transportation Geotechnics, 3, 24–35. doi:10.1016/j.trgeo.2015.01.002.

Ding, M., Zhang, F., Ling, X., & Lin, B. (2018). Effects of freeze-thaw cycles on mechanical properties of polypropylene Fiber and cement stabilized clay. Cold Regions Science and Technology, 154, 155–165. doi:10.1016/j.coldregions.2018.07.004.

Chew, S. H., Kamruzzaman, A. H. M., & Lee, F. H. (2004). Physicochemical and Engineering Behavior of Cement Treated Clays. Journal of Geotechnical and Geoenvironmental Engineering, 130(7), 696–706. doi:10.1061/(asce)1090-0241(2004)130:7(696).

Taylor, H. F. W. (1997). Cement chemistry. Thomas Telford Ltd., London, United Kingdom doi:10.1680/cc.25929.

Mehta, P.K. and Monteiro, P.J.M. (2006) Concrete: Microstructure, Properties, and Materials (3rd Ed.). McGraw-Hill, New York, United Sates.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-01-011

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Mustafa Imad Ahmed, Alaa Hussain Abed

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message