Mechanical Properties of Cement-Stabilized Sandy Soils Modified with Consoil
Abstract
Doi: 10.28991/CEJ-2025-011-01-011
Full Text: PDF
Keywords
References
Sukmak, G., Sukmak, P., Horpibulsuk, S., Phunpeng, V., & Arulrajah, A. (2024). An approach for strength development assessment of cement-stabilized soils with various sand and fine contents. Transportation Geotechnics, 48, 101323. doi:10.1016/j.trgeo.2024.101323.
Yu, H., Joshi, P., Lau, C., & Ng, K. (2024). Novel application of sustainable coal-derived char in cement soil stabilization. Construction and Building Materials, 414, 134960. doi:10.1016/j.conbuildmat.2024.134960.
Rasheed, S. E., Fattah, M. Y., Hassan, W. H., & Hafez, M. (2024). Strength and Durability Characteristics of Sustainable Pavement Base Course Stabilized with Cement Bypass Dust and Spent Fluid Catalytic Cracking Catalyst. Infrastructures, 9(12), 217. doi:10.3390/infrastructures9120217.
Abdolvand, Y., & Sadeghiamirshahidi, M. (2024). Soil stabilization with gypsum: A review. Journal of Rock Mechanics and Geotechnical Engineering. doi:10.1016/j.jrmge.2024.02.007.
Anburuvel, A. (2024). The Engineering Behind Soil Stabilization with Additives: A State-of-the-Art Review. Geotechnical and Geological Engineering, 42(1), 1–42. doi:10.1007/s10706-023-02554-x.
Eisa, M. S., Basiouny, M. E., Mohamady, A., & Mira, M. (2022). Improving Weak Subgrade Soil Using Different Additives. Materials, 15(13). doi:10.3390/ma15134462.
Chen, F. H. (1988). Foundation on Expansive Soils, Amsterdam. Elsevier Scientific Publication Company, New York, United Sates.
Oliveira, P. C. (2003). Contribution to the study of the deep recycling technique in the recovery of flexible pavements. Master Thesis, Universidade Estadual de Campinas-UNICAMP, Campinas, Brazil. (In Portuguese).
Fedrigo, W., Núñez, W. P., & Visser, A. T. (2020). A review of full-depth reclamation of pavements with Portland cement: Brazil and abroad. Construction and Building Materials, 262. doi:10.1016/j.conbuildmat.2020.120540.
Wu, R., Louw, S., & Jones, D. (2015). Effects of binder, curing time, temperature, and trafficking on moduli of stabilized and unstabilized full-depth reclamation materials. Transportation Research Record, 2524, 11–19. doi:10.3141/2524-02.
Wild, S., Kinuthia, J. M., Jones, G. I., & Higgins, D. D. (1998). Effects of partial substitution of lime with ground granulated blast furnace slag (GGBS) on the strength properties of lime-stabilised sulphate-bearing clay soils. Engineering Geology, 51(1), 37–53. doi:10.1016/S0013-7952(98)00039-8.
Dimter, S., Zagvozda, M., Tonc, T., & Šimun, M. (2022). Evaluation of Strength Properties of Sand Stabilized with Wood Fly Ash (WFA) and Cement. Materials, 15(9). doi:10.3390/ma15093090.
Horpibulsuk, S., Rachan, R., Chinkulkijniwat, A., Raksachon, Y., & Suddeepong, A. (2010). Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Construction and Building Materials, 24(10), 2011–2021. doi:10.1016/j.conbuildmat.2010.03.011.
Xiao, F., Yao, S., Wang, J., Li, X., & Amirkhanian, S. (2018). A literature review on cold recycling technology of asphalt pavement. Construction and Building Materials, 180, 579–604. doi:10.1016/j.conbuildmat.2018.06.006.
Jones, D., Wu, R., & Louw, S. (2015). Comparison of full-depth reclamation with Portland cement and full-depth reclamation with no stabilizer in accelerated loading test. Transportation Research Record, 2524, 133–142. doi:10.3141/2524-13.
Amhadi, T. S., & Assaf, G. J. (2019). Assessment of strength development of cemented desert soil. International Journal of Low-Carbon Technologies, 14(4), 543–549. doi:10.1093/ijlct/ctz047.
Modarres, A., & Nosoudy, Y. M. (2015). Clay stabilization using coal waste and lime - Technical and environmental impacts. Applied Clay Science, 116–117, 281–288. doi:10.1016/j.clay.2015.03.026.
ASTM D854-23. (2023). Standard Test Methods for Specific Gravity of Soil Solids by the Water Displacement Method. ASTM international, Pennsylvania, United States. doi:10.1520/D0854-23.
ASTM D698-12. (2021). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM international, Pennsylvania, United States. doi:10.1520/D0698-12R21.
ASTM D2974-20e1. (2020). Standard Test Methods for Determining the Water (Moisture) Content, Ash Content, and Organic Material of Peat and Other Organic Soils. ASTM international, Pennsylvania, United States. doi:10.1520/D2974-20E01.
ASTM D6913-04(2009)e1. (2017). Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. ASTM international, Pennsylvania, United States. 10.1520/D6913-04R09E01.
Wang, D. X., Abriak, N. E., Zentar, R., & Xu, W. (2012). Solidification/stabilization of dredged marine sediments for road construction. Environmental Technology, 33(1), 95–101. doi:10.1080/09593330.2011.551840.
Rios, S., Viana da Fonseca, A., & Baudet, B. A. (2014). On the shearing behaviour of an artificially cemented soil. Acta Geotechnica, 9(2), 215–226. doi:10.1007/s11440-013-0242-7.
Goodarzi, A. R., & Salimi, M. (2015). Stabilization treatment of a dispersive clayey soil using granulated blast furnace slag and basic oxygen furnace slag. Applied Clay Science, 108, 61–69. doi:10.1016/j.clay.2015.02.024.
Jha, A. K., & Sivapullaiah, P. V. (2015). Mechanism of improvement in the strength and volume change behavior of lime stabilized soil. Engineering Geology, 198, 53–64. doi:10.1016/j.enggeo.2015.08.020.
Pourakbar, S., Asadi, A., Huat, B. B. K., & Fasihnikoutalab, M. H. (2015). Stabilization of clayey soil using ultrafine palm oil fuel ash (POFA) and cement. Transportation Geotechnics, 3, 24–35. doi:10.1016/j.trgeo.2015.01.002.
Ding, M., Zhang, F., Ling, X., & Lin, B. (2018). Effects of freeze-thaw cycles on mechanical properties of polypropylene Fiber and cement stabilized clay. Cold Regions Science and Technology, 154, 155–165. doi:10.1016/j.coldregions.2018.07.004.
Chew, S. H., Kamruzzaman, A. H. M., & Lee, F. H. (2004). Physicochemical and Engineering Behavior of Cement Treated Clays. Journal of Geotechnical and Geoenvironmental Engineering, 130(7), 696–706. doi:10.1061/(asce)1090-0241(2004)130:7(696).
Taylor, H. F. W. (1997). Cement chemistry. Thomas Telford Ltd., London, United Kingdom doi:10.1680/cc.25929.
Mehta, P.K. and Monteiro, P.J.M. (2006) Concrete: Microstructure, Properties, and Materials (3rd Ed.). McGraw-Hill, New York, United Sates.
DOI: 10.28991/CEJ-2025-011-01-011
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Mustafa Imad Ahmed, Alaa Hussain Abed

This work is licensed under a Creative Commons Attribution 4.0 International License.