Artificial Recharge of an Unconfined Aquifer Using Treated Wastewater as a Climate Change Mitigation Strategy

Rana A. H. Mukheef, Waqed H. Hassan, S. Alquzweeni

Abstract


Worldwide groundwater extraction has increased dramatically during the past six decades. Water scarcity will affect 1.4 billion people in around 48 nations by 2025. Iraq is experiencing an unparalleled and severe water crisis due to various factors, including climate changes, insufficient rainfall, the policies of neighboring nations, and the increased demand resulting from population expansion. The research area (Dibdiba aquifer) is in Iraq, in the middle between Najaf and Karbala. It was observed that farmers had abandoned numerous wells as a result of the decline in their water levels. Groundwater is the water resource for the region, and due to high agricultural and industrial demand, the Dibdiba aquifer is facing groundwater depletion. This study utilized climatic datasets projected under two scenarios obtained from CMIP6 and the Groundwater Modeling System (GMS). The objective was to evaluate the effect of projected climate change on the quantity of groundwater. Artificial recharge of treated wastewater from the wastewater treatment plant (WWTP) in Kerbala into groundwater aquifers has proven to be an effective method of mitigating groundwater depletion while providing a sustainable water supply. Eleven wells are distributed randomly within the research area; each of them is located within the unconfined aquifer. The groundwater levels in these wells were measured in situ from July 2023 to April 2024. The model was run for steady and unsteady flow conditions, and calibration at steady state was carried out using the groundwater head data for (7) wells. These seven wells were selected to represent the whole research region as well as shorten the simulation run duration in the calibration process. On the other hand, the transient calibration was performed employing measurements of groundwater heads for four wells. Calibration and validation results indicated convergence between the observed and simulated heads. The modeling findings showed that the increment in groundwater level is about 1.0, 1.85, and 2.25 m with artificial recharge of about 6000 m³/day, 9000 m³/day, and 12000 m³/day, respectively. The above findings illustrate the ability of artificial recharge as a highly promising strategy for addressing the water depletion and environmental issues in the Dibdiba aquifer.

 

Doi: 10.28991/CEJ-SP2024-010-016

Full Text: PDF


Keywords


Climate Change; Artificial Recharge; GMS Software; Dibdiba Aquifer.

References


Al-Qurnawy, L. S., Almallah, I. A., & Alrubaye, A. (2024). Hydrochemical Characteristics and Spatial Variability in Coastal Aquifers Southern Iraq Utilizing a GIS Technique. Iraqi Geological Journal, 57(2), 264–276. doi:10.46717/igj.57.2C.18ms-2024-9-26.

Hassan, W. H., & Khalaf, R. M. (2020). Optimum Groundwater use Management Models by Genetic Algorithms in Karbala Desert, Iraq. IOP Conference Series: Materials Science and Engineering, 928(2), 22141. doi:10.1088/1757-899X/928/2/022141.

Mohammed, Z. M., & Hassan, W. H. (2022). Climate change and the projection of future temperature and precipitation in southern Iraq using a LARS-WG model. Modeling Earth Systems and Environment, 8(3), 4205–4218. doi:10.1007/s40808-022-01358-x.

Kløve, B., Ala-Aho, P., Bertrand, G., Gurdak, J. J., Kupfersberger, H., Kværner, J., Muotka, T., Mykrä, H., Preda, E., Rossi, P., Uvo, C. B., Velasco, E., & Pulido-Velazquez, M. (2014). Climate change impacts on groundwater and dependent ecosystems. Journal of Hydrology, 518(PB), 250–266. doi:10.1016/j.jhydrol.2013.06.037.

Asadi, R., Zamaniannejatzadeh, M., & Eilbeigy, M. (2023). Assessing the Impact of Human Activities and Climate Change Effects on Groundwater Quantity and Quality: A Case Study of the Western Varamin Plain, Iran. Water (Switzerland), 15(18), 3196. doi:10.3390/w15183196.

Hassan, W., Faisal, A., Abed, E., Al-Ansari, N., & Saleh, B. (2021). New composite sorbent for removal of sulfate ions from simulated and real groundwater in the batch and continuous tests. Molecules, 26(14), 4356. doi:10.3390/molecules26144356.

Mohsen, K. A., Nile, B. K., & Hassan, W. H. (2020). Experimental work on improving the efficiency of storm networks using a new galley design filter bucket. IOP Conference Series: Materials Science and Engineering, 671(1), 12094. doi:10.1088/1757-899X/671/1/012094.

Aladejana, J. A., Kalin, R. M., Sentenac, P., & Hassan, I. (2020). Assessing the impact of climate change on groundwater quality of the shallow coastal aquifer of eastern dahomey basin, Southwestern Nigeria. Water (Switzerland), 12(1), 224. doi:10.3390/w12010224.

Treidel, H., Martin-Bordes, J. L., & Gurdak, J. J. (2011). Climate Change Effects on Groundwater Resources. CRC Press, London, United Kingdom. doi:10.1201/b11611.

Sajjad, M. M., Wang, J., Abbas, H., Ullah, I., Khan, R., & Ali, F. (2022). Impact of Climate and Land-Use Change on Groundwater Resources, Study of Faisalabad District, Pakistan. Atmosphere, 13(7), 1097. doi:10.3390/atmos13071097.

Hassan, W. H., & Hashim, F. S. (2021). Studying the impact of climate change on the average temperature using CanESM2 and HadCM3 modelling in Iraq. International Journal of Global Warming, 24(2), 131–148. doi:10.1504/IJGW.2021.115898.

Munday, P. L., Donelson, J. M., & Domingos, J. A. (2017). Potential for adaptation to climate change in a coral reef fish. Global Change Biology, 23(1), 307–317. doi:10.1111/gcb.13419.

IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland.

Azizi, H., Ebrahimi, H., Samani, H. M. V., & Khaki, V. (2021). Evaluating the effects of climate change on groundwater level in the Varamin plain. Water Science and Technology: Water Supply, 21(3), 1372–1384. doi:10.2166/ws.2021.007.

Ghazavi, R., & Ebrahimi, H. (2019). Predicting the impacts of climate change on groundwater recharge in an arid environment using modeling approach. International Journal of Climate Change Strategies and Management, 11(1), 88–99. doi:10.1108/IJCCSM-04-2017-0085.

Earman, S., & Dettinger, M. (2011). Potential impacts of climate change on groundwater resources - A global review. Journal of Water and Climate Change, 2(4), 213–229. doi:10.2166/wcc.2011.034.

Reinecke, R., Müller Schmied, H., Trautmann, T., Seaby Andersen, L., Burek, P., Flörke, M., Gosling, S. N., Grillakis, M., Hanasaki, N., Koutroulis, A., Pokhrel, Y., Thiery, W., Wada, Y., Yusuke, S., & Döll, P. (2021). Uncertainty of simulated groundwater recharge at different global warming levels: A global-scale multi-model ensemble study. Hydrology and Earth System Sciences, 25(2), 787–810. doi:10.5194/hess-25-787-2021.

Bouwer, H. (2002). Artificial recharge of groundwater: Hydrogeology and engineering. Hydrogeology Journal, 10(1), 121–142. doi:10.1007/s10040-001-0182-4.

Hassan, W. H., & Hashim, F. S. (2020). The effect of climate change on the maximum temperature in Southwest Iraq using HadCM3 and CanESM2 modelling. SN Applied Sciences, 2(9), 1494. doi:10.1007/s42452-020-03302-z.

Hussain, T. A., Ismail, M. M., & Al-Ansari, N. (2021). Simulation of the ground water flow in Karbala Governorate, Iraq. Environmental Earth Sciences, 80(5). doi:10.1007/s12665-021-09452-6.

Khalaf, R. M., Hussein, H. H., Hassan, W. H., Mohammed, Z. M., & Nile, B. K. (2022). Projections of precipitation and temperature in Southern Iraq using a LARS-WG Stochastic weather generator. Physics and Chemistry of the Earth, 128, 103224. doi:10.1016/j.pce.2022.103224.

Al-Mussawi, W. H. (2008). Kriging of groundwater level-a case study of Dibdiba Aquifer in area of Karballa-Najaf. Journal of Karbala University, 6(1), 170-182.

Ramadhan, A., Ali, M., & Al-Kubaisy, R. (2013). Evaluation of groundwater recharge in arid and semiarid regions (case study of Dibdiba formation in Karballa-Najaf plateau). Iraqi Journal of Science, 54(4), 902-910.

Al-Kubaisi, Q. Y., Al-Abadi, A. M., & Al-Ghanimy, M. A. (2018). Estimation of groundwater recharge by groundwater level fluctuation method of dibdibba aquifer at Karbala- Najaf plateau, central of Iraq. Iraqi Journal of Science, 59(4), 1899–1909. doi:10.24996/IJS.2018.59.4A.14.

Al-Dabbas, M., Khafaji, R. A.-, & Al-Jaberi, M. H. A. (2015). Impact of climate changes on the hydrogeological aquifers-case study Dibdiba aquifer at Karbala Najaf area, Iraq. International Journal of Research in Science and Technology, 5(3), 24–39.

Al-Ghanimy, M. A. (2018). Assessment of Hydrogeological Condition in Karbala—Najaf Plateau, Iraq. PhD Thesis, University of Baghdad, Baghdad, Iraq.

UNEP. (2000). Global warming environmental, report. United Nations Environment Programme (UNEP), Nairobi, Kenya.

Al-Kubaisi, Q. Y. (2004). Annual aridity index of type. 1 and type. 2 mode options climate classification. Science Journal, 45(1), 32-40.

Yeboah, K. A., Akpoti, K., Kabo-bah, A. T., Ofosu, E. A., Siabi, E. K., Mortey, E. M., & Okyereh, S. A. (2022). Assessing climate change projections in the Volta Basin using the CORDEX-Africa climate simulations and statistical bias-correction. Environmental Challenges, 6, 100439. doi:10.1016/j.envc.2021.100439.

Amognehegn, A. E., Nigussie, A. B., Adamu, A. Y., & Mulu, G. F. (2023). Analysis of future meteorological, hydrological, and agricultural drought characterization under climate change in Kessie watershed, Ethiopia. Geocarto International, 38(1), 2247377. doi:10.1080/10106049.2023.2247377.

Ghodoosipour, B. (2013). Three dimensional groundwater modeling in Laxemar-Simepevarp guaternary deposits. 13 41 TRITA-LWR Degree Project, Royal Institute of Technology (KTH), Stockholm, Sweden.

Toews, M. W. (2007). Modelling climate change impacts on groundwater recharge in a semi-arid region, southern Okanagan, British Columbia. Master Thesis, Simon Fraser University, Burnaby, Canada.

Niswonger, R. G., Prudic, D. E., & Regan, R. S. (2006). Documentation of the Unsaturated-Zone Flow (UZF1) Package for modeling Unsaturated Flow between the Land Surface and the Water Table with MODFLOW-2005. Techniques and Methods. United States Geological Survey (USGS), Reston, United States. doi:10.3133/tm6a19.

Al-Muqdadi, S. W. (2012). Groundwater investigation and modeling-western desert of Iraq. Ph.D. Thesis, Technische Universität Bergakademie Freiberg, Freiberg, Germany.

Mustafa, J. S., & Mawlood, D. K. (2024). Assessment of the Groundwater in Erbil Basin with Support of Visual MODFLOW. Journal of Ecological Engineering, 25(4), 203–227. doi:10.12911/22998993/184184.

Hosseinizadeh, A., Zarei, H., Akhondali, A. M., Seyedkaboli, H., & Farjad, B. (2019). Potential impacts of climate change on groundwater resources: A multi-regional modelling assessment. Journal of Earth System Science, 128(5). doi:10.1007/s12040-019-1134-5.

Geleta, C. D., & Gobosho, L. (2018). Climate change induced temperature prediction and bias correction in Finchaa watershed. American-Eurasian Journal of Agricultural & Environmental Sciences, 18, 324-337. doi:10.5829/idosi.aejaes.2018.324.337.

Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1), 55-94. doi:10.2307/210739.

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900. doi:10.13031/2013.23153.

Dragoni, W., & Sukhija, B. S. (2008). Climate change and groundwater: A short review. Geological Society Special Publication, 288, 1–12. doi:10.1144/SP288.1.


Full Text: PDF

DOI: 10.28991/CEJ-SP2024-010-016

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Waqed Hammed Hassan, Rana Mukheef, Saif Alquzweeni

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message