Complex Geodetic Monitoring of the Massive Sports Structures by Terrestrial Laser Scanning
Abstract
Doi: 10.28991/CEJ-2025-011-03-05
Full Text: PDF
Keywords
References
Wu, R. T., & Jahanshahi, M. R. (2020). Data fusion approaches for structural health monitoring and system identification: Past, present, and future. Structural Health Monitoring, 19(2), 552–586. doi:10.1177/1475921718798769.
Kot, P., Muradov, M., Gkantou, M., Kamaris, G. S., Hashim, K., & Yeboah, D. (2021). Recent advancements in non-destructive testing techniques for structural health monitoring. Applied Sciences (Switzerland), 11(6), 2750. doi:10.3390/app11062750.
Caballero-Russi, D., Ortiz, A. R., Guzmán, A., & Canchila, C. (2022). Design and Validation of a Low-Cost Structural Health Monitoring System for Dynamic Characterization of Structures. Applied Sciences (Switzerland), 12(6), 2807. doi:10.3390/app12062807.
O’Shea, M., & Murphy, J. (2020). Design of a BIM integrated structural health monitoring system for a historic offshore lighthouse. Buildings, 10(7), 131. doi:10.3390/BUILDINGS10070131.
Panah, R. S., & Kioumarsi, M. (2021). Application of building information modelling (BIM) in the health monitoring and maintenance process: A systematic review. Sensors (Switzerland), 21(3), 1–26. doi:10.3390/s21030837.
Shults, R. (2022). Geospatial Monitoring of Engineering Structures as a Part of BIM. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 46(5/W1-2022), 225–230. doi:10.5194/isprs-archives-XLVI-5-W1-2022-225-2022.
Hamza, V., Stopar, B., Ambrožič, T., Turk, G., & Sterle, O. (2020). Testing multi-frequency low-cost GNSS receivers for geodetic monitoring purposes. Sensors (Switzerland), 20(16), 1–16. doi:10.3390/s20164375.
Zhao, L., Yang, Y., Xiang, Z., Zhang, S., Li, X., Wang, X., Ma, X., Hu, C., Pan, J., Zhou, Y., & Chen, M. (2022). A Novel Low-Cost GNSS Solution for the Real-Time Deformation Monitoring of Cable Saddle Pushing: A Case Study of Guojiatuo Suspension Bridge. Remote Sensing, 14(20), 5174. doi:10.3390/rs14205174.
Scaioni, M., Marsella, M., Crosetto, M., Tornatore, V., & Wang, J. (2018). Geodetic and remote-sensing sensors for dam deformation monitoring. Sensors (Switzerland), 18(11), 3682. doi:10.3390/s18113682.
Zschiesche, K. (2021). Image Assisted Total Stations for Structural Health Monitoring—A Review. Geomatics, 2(1), 1–16. doi:10.3390/geomatics2010001.
Doler, D., & Kovačič, B. (2019). Improved decision-making geo-information system for continuous monitoring of deformations on airport infrastructure. ISPRS International Journal of Geo-Information, 8(1), 1. doi:10.3390/ijgi8010001.
Olaszek, P., Maciejewski, E., Rakoczy, A., Cabral, R., Santos, R., & Ribeiro, D. (2024). Remote Inspection of Bridges with the Integration of Scanning Total Station and Unmanned Aerial Vehicle Data. Remote Sensing, 16(22), 4176. doi:10.3390/rs16224176.
Lienhart, W., Ehrhart, M., & Grick, M. (2017). High frequent total station measurements for the monitoring of bridge vibrations. Journal of Applied Geodesy, 11(1), 1–8. doi:10.1515/jag-2016-0028.
Lienhart, W. (2017). Geotechnical monitoring using total stations and laser scanners: critical aspects and solutions. Journal of Civil Structural Health Monitoring, 7(3), 315–324. doi:10.1007/s13349-017-0228-5.
Marendić, A., Paar, R., & Damjanović, D. (2017). Measurement of bridge dynamic displacements and natural frequencies by RTS. Journal of the Croatian Association of Civil Engineers, 69(4), 281–294. doi:10.14256/jce.1804.2016.
Pawlak, Z. M., Wyczałek, I., & Marciniak, P. (2023). Two Complementary Approaches toward Geodetic Monitoring of a Historic Wooden Church to Inspect Its Static and Dynamic Behavior. Sensors, 23(20), 8392. doi:10.3390/s23208392.
Barsocchi, P., Bartoli, G., Betti, M., Girardi, M., Mammolito, S., Pellegrini, D., & Zini, G. (2021). Wireless Sensor Networks for Continuous Structural Health Monitoring of Historic Masonry Towers. International Journal of Architectural Heritage, 15(1), 22–44. doi:10.1080/15583058.2020.1719229.
Corsetti, M., Fossati, F., Manunta, M., & Marsella, M. (2018). Advanced SBAS-DInSAR technique for controlling large civil infrastructures: An application to the Genzano di Lucania dam. Sensors (Switzerland), 18(7), 2371. doi:10.3390/s18072371.
Wu, S., Zhang, B., Ding, X., Zhang, L., Zhang, Z., & Zhang, Z. (2023). Radar Interferometry for Urban Infrastructure Stability Monitoring: From Techniques to Applications. Sustainability (Switzerland), 15(19), 14654. doi:10.3390/su151914654.
Teng, J., Lu, W., Cui, Y., & Zhang, R. (2016). Temperature and Displacement Monitoring to Steel Roof Construction of Shenzhen Bay Stadium. International Journal of Structural Stability and Dynamics, 16(4), 1640020. doi:10.1142/S0219455416400204.
Shults, R., Soltabayeva, S., Seitkazina, G., Nukarbekova, Z., & Kucherenko, O. (2020). Geospatial Monitoring and Structural Mechanics Models: a Case Study of Sports Structures. The 11th International Conference Environmental Engineering 11th ICEE Selected Papers, enviro.2020.685. doi:10.3846/enviro.2020.685.
Mukupa, W., Roberts, G. W., Hancock, C. M., & Al-Manasir, K. (2017). A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures. Survey Review, 49(353), 99–116. doi:10.1080/00396265.2015.1133039.
Głowacki, T., Grzempowski, P., Sudoł, E., Wajs, J., & Zając, M. (2017). The assessment of the application of terrestrial laser scanning for measuring the geometrics of cooling towers. Geomatics, Landmanagement and Landscape, 4, 49–57. doi:10.15576/gll/2016.4.49.
Beshr, A. A. A., Basha, A. M., El-Madany, S. A., & El-Azeem, F. A. (2023). Deformation of High Rise Cooling Tower through Projection of Coordinates Resulted from Terrestrial Laser Scanner Observations onto a Vertical Plane. ISPRS International Journal of Geo-Information, 12(10), 417. doi:10.3390/ijgi12100417.
Makuch, M., Gawronek, P., & Mitka, B. (2024). Laser Scanner-Based Hyperboloid Cooling Tower Geometry Inspection: Thickness and Deformation Mapping. Sensors, 24(18), 6045. doi:10.3390/s24186045.
Helming, P., Von Freyberg, A., Sorg, M., & Fischer, A. (2021). Wind turbine tower deformation measurement using terrestrial laser scanning on a 3.4 MW wind turbine. Energies, 14(11), 3255. doi:10.3390/en14113255.
Kregar, K., Ambrožič, T., Kogoj, D., Vezočnik, R., & Marjetič, A. (2015). Determining the inclination of tall chimneys using the TPS and TLS approach. Measurement, 75, 354–363. doi:10.1016/j.measurement.2015.08.006.
Barazzetti, L., Previtali, M., & Roncoroni, F. (2019). The Use of Terrestrial Laser Scanning Techniques to Evaluate Industrial Masonry Chimney Verticality. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W11, 173–178. doi:10.5194/isprs-archives-xlii-2-w11-173-2019.
Siwiec, J., & Lenda, G. (2022). Integration of terrestrial laser scanning and structure from motion for the assessment of industrial chimney geometry. Measurement: Journal of the International Measurement Confederation, 199, 111404. doi:10.1016/j.measurement.2022.111404.
Li, Y., Liu, P., Li, H., & Huang, F. (2021). A comparison method for 3D laser point clouds in displacement change detection for arch dams. ISPRS International Journal of Geo-Information, 10(3), 184. doi:10.3390/ijgi10030184.
Ning, X. Y., Zhang, K., Jiang, N., Luo, X. L., Zhang, D. M., Peng, J. W., Luo, X. X., Zheng, Y. S., & Guo, D. (2024). 3D deformation analysis for earth dam monitoring based on terrestrial laser scanning (TLS) and the iterative closest point (ICP) algorithm. Frontiers in Earth Science, 12. doi:10.3389/feart.2024.1421705.
Bolkas, D., O’Banion, M., Laughlin, J., & Prickett, J. (2024). Monitoring of a rockfill embankment dam using TLS and sUAS point clouds. Journal of Applied Geodesy, 19(1), 75–93. doi:10.1515/jag-2023-0038.
Jia, D., Zhang, W., & Liu, Y. (2021). Systematic approach for tunnel deformation monitoring with terrestrial laser scanning. Remote Sensing, 13(17), 3519. doi:10.3390/rs13173519.
Xu, X., Yang, H., & Kargoll, B. (2019). Robust and automatic modeling of tunnel structures based on terrestrial laser scanning measurement. International Journal of Distributed Sensor Networks, 15(11), 1-9. doi:10.1177/1550147719884886.
Cui, L.-Z., Liu, J., Luo, H., Wang, J., Zhang, X., Lv, G., & Xie, Q. (2024). Deformation Measurement of Tunnel Shotcrete Liner Using the Multiepoch LiDAR Point Clouds. Journal of Construction Engineering and Management, 150(6), 150. doi:10.1061/jcemd4.coeng-14518.
Beshr, A. A. A., Ghazi, Z., & Heneash, U. (2025). Condition assessment and inspection of highway bridges using terrestrial laser scanner. World Journal of Engineering, 499. doi:10.1108/WJE-09-2024-0499.
Rashidi, M., Mohammadi, M., Kivi, S. S., Abdolvand, M. M., Truong-Hong, L., & Samali, B. (2020). A decade of modern bridge monitoring using terrestrial laser scanning: Review and future directions. Remote Sensing, 12(22), 1–34. doi:10.3390/rs12223796.
Zhao, Y., Seo, H., & Chen, C. (2021). Displacement mapping of point clouds: application of retaining structures composed of sheet piles. Journal of Civil Structural Health Monitoring, 11(4), 915–930. doi:10.1007/s13349-021-00491-y.
Yang, H., Omidalizarandi, M., Xu, X., & Neumann, I. (2017). Terrestrial laser scanning technology for deformation monitoring and surface modeling of arch structures. Composite Structures, 169, 173–179. doi:10.1016/j.compstruct.2016.10.095.
Nguyen, A. C., & Weinand, Y. (2020). Displacement study of a large-scale freeform timber plate structure using a total station and a terrestrial laser scanner. Sensors (Switzerland), 20(2), 413. doi:10.3390/s20020413.
Shults, R., Annenkov, A., Seitkazina, G., Soltabayeva, S., Kozhayev, Z., Khailak, A., Nikitenko, K., Sossa, B., & Kulichenko, N. (2022). Analysis of the displacements of pipeline overpasses based on geodetic monitoring results. Geodesy and Geodynamics, 13(1), 50–71. doi:10.1016/j.geog.2021.09.005.
Li, J., Wang, L., & Huang, J. (2023). Wall length-based deformation monitoring method of brick-concrete buildings in mining area using terrestrial laser scanning. Journal of Civil Structural Health Monitoring, 13(4–5), 1077–1090. doi:10.1007/s13349-023-00697-2.
Sun, W., Wang, J., Jin, F., Li, G., & Xu, F. (2023). Intelligent Construction Monitoring Method for Large and Complex Steel Structures Based on Laser Point Cloud. Buildings, 13(7), 1749. doi:10.3390/buildings13071749.
Nap, M. E., Chiorean, S., Cira, C. I., Manso-Callejo, M. Á., Păunescu, V., Șuba, E. E., & Sălăgean, T. (2023). Non-Destructive Measurements for 3D Modeling and Monitoring of Large Buildings Using Terrestrial Laser Scanning and Unmanned Aerial Systems. Sensors, 23(12), 5678. doi:10.3390/s23125678.
Xu, X., Wang, Z., Shi, P., Liu, W., Tang, Q., Bao, X., Chen, X., & Yang, H. (2023). Intelligent monitoring and residual analysis of tunnel point cloud data based on free-form approximation. Mechanics of Advanced Materials and Structures, 30(8), 1703–1712. doi:10.1080/15376494.2022.2041775.
EM 1110-2-1009. (2018). Structural Deformation Surveying. US Army Corps of Engineers, Washington, United States.
Shults, R. (2021). The Models of Structural Mechanics for Geodetic Accuracy Assignment: A Case Study of the Finite Element Method. Contributions to International Conferences on Engineering Surveying. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham, Switzerland. doi:10.1007/978-3-030-51953-7_16.
Yang, H., Xu, X., Xu, X., & Liu, W. (2024). TLS and FEM combined methods for deformation analysis of tunnel structures. Mechanics of Advanced Materials and Structures, 31(6), 1264–1271. doi:10.1080/15376494.2022.2134613.
Korumaz, M., Betti, M., Conti, A., Tucci, G., Bartoli, G., Bonora, V., Korumaz, A. G., & Fiorini, L. (2017). An integrated Terrestrial Laser Scanner (TLS), Deviation Analysis (DA) and Finite Element (FE) approach for health assessment of historical structures. A minaret case study. Engineering Structures, 153, 224–238. doi:10.1016/j.engstruct.2017.10.026.
Takhirov, S., Rakhmonov, B., Nafasov, R., Samandarov, A., & Sultanova, S. (2023). Laser Scanning and Ambient Vibration Study of Juma Mosque in Khiva (Uzbekistan) with Subsequent Finite Element Modeling of Its Minaret. Remote Sensing, 15(6), 1632. doi:10.3390/rs15061632.
Kermarrec, G., Kargoll, B., & Alkhatib, H. (2020). Deformation analysis using B-spline surface with correlated terrestrial laser scanner observations-a bridge under load. Remote Sensing, 12(5), 829. doi:10.3390/rs12050829.
Xu, H., Li, H., Yang, X., Qi, S., & Zhou, J. (2019). Integration of terrestrial laser scanning and NURBS modeling for the deformation monitoring of an earth-rock dam. Sensors (Switzerland), 19(1), 22. doi:10.3390/s19010022.
Harmening, C. (2020). Spatio-temporal deformation analysis using enhanced B-spline models of laser scanning point clouds. PhD Thesis, Technische Universität Wien, Vienna, Austria.
Harmening, C., Hobmaier, C., & Neuner, H. (2021). Laser scanner–based deformation analysis using approximating b-spline surfaces. Remote Sensing, 13(18), 3551. doi:10.3390/rs13183551.
Bureick, J., Alkhatib, H., & Neumann, I. (2016). Robust Spatial Approximation of Laser Scanner Point Clouds by Means of Free-form Curve Approaches in Deformation Analysis. Journal of Applied Geodesy, 10(1), 27–35. doi:10.1515/jag-2015-0020.
Xu, X., Kargoll, B., Bureick, J., Yang, H., Alkhatib, H., & Neumann, I. (2018). TLS-based profile model analysis of major composite structures with robust B-spline method. Composite Structures, 184, 814–820. doi:10.1016/j.compstruct.2017.10.057.
Xu, J., Ding, L., Luo, H., Chen, E. J., & Wei, L. (2019). Near real-time circular tunnel shield segment assembly quality inspection using point cloud data: A case study. Tunnelling and Underground Space Technology, 91. doi:10.1016/j.tust.2019.102998.
Kermarrec, G., Schild, N., & Hartmann, J. (2021). Fitting terrestrial laser scanner point clouds with t-splines: Local refinement strategy for rigid body motion. Remote Sensing, 13(13), 2494. doi:10.3390/rs13132494.
Shults, R., Seitkazina, G., & Soltabayeva, S. (2023). The Features of Sports Complex “Sunkar” Monitoring By Terrestrial Laser Scanning. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 48(5/W2-2023), 105–110. doi:10.5194/isprs-archives-XLVIII-5-W2-2023-105-2023.
Logan, D.L. (2011) A First Course in the Finite Element Method. 5th Edition, Thomson, Toronto, Canada.
Lee, H. H. (2012). Finite element simulations with ANSYS Workbench 14. SDC publications, Mission, Canada.
Liu, G.R. and Quek, S.S. (2003) The Finite Element Method: A Practical Course. Butterworth-Heinemann, New York, United States.
Connor, J. J., & Faraji, S. (2013). Fundamentals of Structural Engineering. Springer New York, United States. doi:10.1007/978-1-4614-3262-3.
Cadence Design Systems (2025). An Introduction to B-Spline Curves. Cadence Design Systems, California, United States. Available online: https://resources.system-analysis.cadence.com/blog/msa2022-an-introduction-to-b-spline-curves (accessed on February 2025).
Perperoglou, A., Sauerbrei, W., Abrahamowicz, M., & Schmid, M. (2019). A review of spline function procedures in R. BMC Medical Research Methodology, 19(1), 46. doi:10.1186/s12874-019-0666-3.
MTU (2025). NURBS: Definition. Michigan Technological University, Michigan, United States. Available online: https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/NURBS-def.html (accessed on February 2025).
Piegl, L., & Tiller, W. (1995). The NURBS Book: Monographs in Visual Communication (VISUALCOMM). Springer-Verlag, Berlin/Heidelberg, Germany. doi:10.1007/978-3-642-97385-7.
DOI: 10.28991/CEJ-2025-011-03-05
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Roman Shults, Gulnur Seitkazina, Andriy Annenkov, Roman Demianenko, Saule Soltabayeva, Zhenis Kozhayev, Gulizat Orazbekova

This work is licensed under a Creative Commons Attribution 4.0 International License.