Unfired Bricks Mixed with Para Rubber Latex for Sustainable Construction Materials
Abstract
Doi: 10.28991/CEJ-2024-010-12-05
Full Text: PDF
Keywords
References
IEA. (2019). Perspectives for the Clean Energy Transition. The Critical Role of Buildings. International Energy Agency (IEA), Paris, France.
UN Environment Program. (2020). Global status report for buildings and construction. Global Alliance for Buildings and Construction. Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector, Nairobi, Kenya.
Sizirici, B., Fseha, Y., Cho, C. S., Yildiz, I., & Byon, Y. J. (2021). A review of carbon footprint reduction in construction industry, from design to operation. Materials, 14(20). doi:10.3390/ma14206094.
Gursel, A. P., Shehabi, A., & Horvath, A. (2023). Embodied energy and greenhouse gas emission trends from major construction materials of U.S. office buildings constructed after the mid-1940s. Building and Environment, 234. doi:10.1016/j.buildenv.2023.110196.
Intergovernmental Panel on Climate Change. (2001). Climate change 2007: Impacts, adaptation and vulnerability. Intergovernmental Panel on Climate Change, Geneva, Switzerland.
Pervaiz, S., Shirazi, S. A., & Ahamad, M. I. (2023). Greenhouse gas emissions and aerosol distribution in brick kiln zones of Punjab, Pakistan: an appraisal using spatial information technology. Natural and Applied Sciences International Journal (NASIJ), 4(1), 62–79. doi:10.47264/idea.nasij/4.1.5.
Kumbhar, S., Kulkarni, N., Rao, A. B., & Rao, B. (2014). Environmental life cycle assessment of traditional bricks in western Maharashtra, India. Energy Procedia, 54, 260–269. doi:10.1016/j.egypro.2014.07.269.
Lechheb, M., Harrou, A., El Boukili, G., Azrour, M., Lahmar, A., El Ouahabi, M., & Gharibi, E. K. (2022). Physico-chemical, mineralogical, and technological characterization of stabilized clay bricks for restoration of Kasbah Ait Benhadou- Ouarzazate (south-east of Morocco). Materials Today: Proceedings, 58, 1229–1234. doi:10.1016/j.matpr.2022.01.459.
Jannat, N., Hussien, A., Abdullah, B., & Cotgrave, A. (2020). Application of agro and non-agro waste materials for unfired earth blocks construction: A review. Construction and Building Materials, 254. doi:10.1016/j.conbuildmat.2020.119346.
Niyomukiza, J. B., Nabitaka, K. C., Kiwanuka, M., Tiboti, P., & Akampulira, J. (2022). Enhancing Properties of Unfired Clay Bricks Using Palm Fronds and Palm Seeds. Results in Engineering, 16. doi:10.1016/j.rineng.2022.100632.
Ftaikhan, A. K., & Al-Sharrad, M. A. (2024). Effect of Compaction Pressure on a Stabilized Rammed Earth Behavior. Salud, Ciencia y Tecnología-Serie de Conferencias, 3, 821-821.. doi:10.56294/sctconf2024821.
Zhang, Y., Jiang, S., Quan, D., Fang, K., Wang, B., & Ma, Z. (2024). Properties of Sustainable Earth Construction Materials: A State-of-the-Art Review. Sustainability (Switzerland), 16(2), 670. doi:10.3390/su16020670.
Junaid, M. F., ur Rehman, Z., Kuruc, M., Medveď, I., Bačinskas, D., Čurpek, J., ... & Ansari, W. S. (2022). Lightweight concrete from a perspective of sustainable reuse of waste byproducts. Construction and Building Materials, 319, 126061. doi:10.1016/j.conbuildmat.2021.126061.
Walker, P. J. (1995). Strength, durability and shrinkage characteristics of cement stabilised soil blocks. Cement and Concrete Composites, 17(4), 301–310. doi:10.1016/0958-9465(95)00019-9.
Muñoz, S., Rojas, M., Villena, L., Tepe, V., Garcia, J., & Alvarez, J. (2024). Physical and mechanical characterization of cement-stabilized compressed earth bricks. Revista Ingenieria de Construccion, 39(1), 85–95. doi:10.7764/RIC.00101.21.
Abdeldjebar, R., Idder, A., Ali, A. M., Hamouine, A., Lahmar, L., Missoum, L., Mouddene, B., & Mokeddem, S. (2024). Evaluation of the incorporation of artisanal lime into the composition of stabilized earth blocks. Studies in Engineering and Exact Sciences, 5(2), e9674. doi:10.54021/seesv5n2-385.
Kererat, C., Kroehong, W., Thaipum, S., & Chindaprasirt, P. (2022). Bottom ash stabilized with cement and para rubber latex for road base applications. Case Studies in Construction Materials, 17, e01259. doi:10.1016/j.cscm.2022.e01259.
Chynoweth, G. L. (1984). Properties of Latex-Modified Shotcrete Beneficial to Concrete Repairs. Transportation Research Record, 1003, 42-46.
Lachheb, M., Youssef, N., & Younsi, Z. (2023). A Comprehensive Review of the Improvement of the Thermal and Mechanical Properties of Unfired Clay Bricks by Incorporating Waste Materials. Buildings, 13(9), 2314. doi:10.3390/buildings13092314.
Zhuang, C., Tao, R., Liu, X., Zhang, L., Cui, Y., Liu, Y., & Zhang, Z. (2021). Enhanced thermal conductivity and mechanical properties of natural rubber-based composites co-incorporated with surface treated alumina and reduced graphene oxide. Diamond and Related Materials, 116, 108431. doi:10.1016/j.diamond.2021.108438.
Li, J., Zhao, X., Wu, W., Zhang, Z., Xian, Y., Lin, Y., Lu, Y., & Zhang, L. (2020). Advanced flexible rGO-BN natural rubber films with high thermal conductivity for improved thermal management capability. Carbon, 162, 46–55. doi:10.1016/j.carbon.2020.02.012.
Cheng, S., Duan, X., Zhang, Z., An, D., Zhao, G., & Liu, Y. (2021). Preparation of a natural rubber with high thermal conductivity, low heat generation and strong interfacial interaction by using NS-modified graphene oxide. Journal of Materials Science, 56(5), 4034–4050. doi:10.1007/s10853-020-05503-8.
Khamput, P., & Suweero, K. (2014). Using of para-rubber to develop properties of concrete block mixed with ethylene vinyl acetate plastic in masonry. International Journal of Environmental and Rural Development, 5(2), 86-92.
Rath, B., Debnath, R., Praveenkumar, T. R., & Sakhlecha, M. (2022). An innovative technique for internal curing of concrete with brick aggregate, nanoparticles of Al2O3 and rubber latex. Innovative Infrastructure Solutions, 7(1), 77.doi:10.1007/s41062-021-00673-z.
Abdel Kader, M. M., Abdel-wehab, S. M., Helal, M. A., & Hassan, H. H. (2012). Evaluation of thermal insulation and mechanical properties of waste rubber/natural rubber composite. HBRC Journal, 8(1), 69–74. doi:10.1016/j.hbrcj.2011.11.001.
Janpetch, N., & Kokkamhaeng, W. (2016). The test of the compressive strength of an interlocking block of Thailand. RMUTSB Academic Journal, 196–206.
George, U. U., Andy, J. A., & Joseph, A. (2014). Biochemical and phyto-chemical characteristics of Rubber Latex (Hevea brasiliensis) obtained from a tropical environment in Nigeria. International Journal of Scientific & Technology Research, 3(8), 377-380.
Tolsma, J., & Johnson, A. N. (1972). Use of latex as a soil sealant to control acid mine drainage (Vol. 14010). US Government Printing Office, Washington, United States.
Veena, U., & James, N. (2023). Application of Natural Rubber Latex for Improving Dynamic Response of Sand. ASCE Inspire 2023, 941–947. doi:10.1061/9780784485163.108.
Veena, U., & James, N. (2024). Natural Rubber Latex for Reducing Soil Brittleness Induced by Post-compaction Moisture Reduction. Proceedings of the Indian Geotechnical Conference 2022 Volume 4, IGC 2022, Lecture Notes in Civil Engineering, 479. Springer, Singapore. doi:10.1007/978-981-97-1753-8_1.
Sasui, S., Watcharin, J., & Sirimas, H. (2017). Variation in compressive strength of handmade adobe brick. International Journal of Scientific and Research Publications, 7(9), 38-43.
Zami, M. S., & Lee, A. (2010). Stabilised or unstabilised earth construction for contemporary urban housing? 5th International Conference on Responsive Manufacturing - Green Manufacturing (ICRM 2010), 227–240. doi:10.1049/cp.2010.0440.
Pacheco-Torgal, F., & Jalali, S. (2012). Earth construction: Lessons from the past for future eco-efficient construction. Construction and Building Materials, 29, 512–519. doi:10.1016/j.conbuildmat.2011.10.054.
Intaboot, N. (2020). Innovation of interlocking block mixing with biomass for sound absorption and thermal conductivity in thailand. Journal of Advanced Concrete Technology, 18(8), 473–480. doi:10.3151/jact.18.473.
Tuffrey, J., Siwseng, P., Laksanakit, C., & Chusilp, N. (2024). Enhancing the performance of waste paper pulp-cement composites, through the incorporation of natural rubber latex: A sustainable approach for high-performance construction materials. Construction and Building Materials, 430. doi:10.1016/j.conbuildmat.2024.136345.
TIS 1746-2545 (2002) Ammonium nitrate for anfo explosive. Thai Industrial Standards Institute (TISI), Bangkok, Thailand. (In Thai).
ASTM C1314-18. (2018). Standard Test Method for Compressive Strength of Masonry Prisms. ASTM International, Pennsylvania, United States. doi:10.1520/C1314-21.
ASTM Standard C140 (2014). Standard Test Method for Sampling and Testing Concrete Masonry Units and Related Units. ASTM International, Pennsylvania, United States.
ASTM C20-00. (2022). Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water. ASTM International, Pennsylvania, United States. doi:10.1520/C0020-00R22.
ASTM C138/C138M-17a. (2023). Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0138_C0138M-17A.
ASTM C518-21. (2021). Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. ASTM International, Pennsylvania, United States. doi:10.1520/C0518-21.
TIS 109-2517. (1974). Standard specification for sampling and testing concrete masonry units. Thai Industrial Standards Institute (TISI), Bangkok, Thailand. (In Thai).
Khamput, P. (2006). A-23 Using Latex from Para-Rubber for Developing Strength and Thermal Insulation Properties of Concrete Block (Session: Inorganic Materials). The Proceedings of the Asian Symposium on Materials and Processing, 2006(0), 23. doi:10.1299/jsmeasmp.2006.23.
Weeranukul, P. (2014). A study of the physical, mechanical, and thermal insulation characteristics of palm oil ash concrete blocks mixed with natural rubber. Proceedings of the 6th RMUTNC and 5th RMUTIC Rajamangala University of Technology Ayutthaya Thailand, 23-25 July, Ayutthaya, Thailand.
Wongpa, J., Koslanant, S., Thongsanitgarn, P., & Chalee, W. (2021). Effects of para rubber latex on workability, compressive strength and water permeability of normal strength concrete. Engineering Access, 7(1), 61-66.
Fan, L., Xu, F., Wang, S., Yu, Y., Zhang, J., & Guo, J. (2023). A review on the modification mechanism of polymer on cement-based materials. Journal of Materials Research and Technology, 26, 5816–5837. doi:10.1016/j.jmrt.2023.08.291.
Chaikaew, C., Nokkaew, N., Sua-iam, G., & Songkhla, W. N. (2024). Utilizing Reclaimed Asphalt Pavement As a Replacement for Coarse Aggregate in Roller Compacted Concrete. Suranaree Journal of Science and Technology, 31(1). doi:10.55766/sujst-2024-01-e02653.
Guo, L., Jia, Z., Zhong, L., & Chen, S. (2023). Study on failure characteristics of baking-free bricks with wrap-shell aggregate. Construction and Building Materials, 407, 133541. doi:10.1016/j.conbuildmat.2023.133541.
Yin, Y., Ren, Q., & Shen, L. (2020). Study on the effect of aggregate distribution on mechanical properties and damage cracks of concrete based on multifractal theory. Construction and Building Materials, 262, 120086. doi:10.1016/j.conbuildmat.2020.120086.
Mathew, L. A., & Joseph, G. (2024). Natural rubber latex for the development of high performance cement mortar. Innovative Infrastructure Solutions, 9(4), 97. doi:10.1007/s41062-024-01398-5.
Sukmak, G., Sukmak, P., Horpibulsuk, S., Yaowarat, T., Kunchariyakun, K., Patarapaiboolchai, O., & Arulrajah, A. (2020). Physical and mechanical properties of natural rubber modified cement paste. Construction and Building Materials, 244, 118319. doi:10.1016/j.conbuildmat.2020.118319.
Yaowarat, T., Suddeepong, A., Hoy, M., Horpibulsuk, S., Takaikaew, T., Vichitcholchai, N., Arulrajah, A., & Chinkulkijniwat, A. (2021). Improvement of flexural strength of concrete pavements using natural rubber latex. Construction and Building Materials, 282, 122704. doi:10.1016/j.conbuildmat.2021.122704.
Abdul Kadir, A., Detho, A., Hashim, A. A., & Mat Rozi, N. H. (2023). Assessment of thermal conductivity and indoor air quality of fired clay brick incorporated with electroplating sludge. Results in Engineering, 18. doi:10.1016/j.rineng.2023.101169.
Llorente-Alvarez, A., Camino-Olea, M. S., Cabeza-Prieto, A., Saez-Perez, M. P., & Rodríguez-Esteban, M. A. (2022). The thermal conductivity of the masonry of handmade brick Cultural Heritage with respect to density and humidity. Journal of Cultural Heritage, 53, 212–219. doi:10.1016/j.culher.2021.12.004.
Ashour, T., Korjenic, A., Korjenic, S., & Wu, W. (2015). Thermal conductivity of unfired earth bricks reinforced by agricultural wastes with cement and gypsum. Energy and Buildings, 104, 139–146. doi:10.1016/j.enbuild.2015.07.016.
Johra, H. (2021). Thermal properties of building materials-Review and database. DCE Technical Reports, Department of the Built Environment, Aalborg University, Aalborg, Denmark.
Nandipati, S., GVR, S. R., Dora, N., & Bahij, S. (2023). Potential use of sustainable industrial waste byproducts in fired and unfired brick production. Advances in Civil Engineering, 2023(1), 9989054. doi:10.1155/2023/9989054.
Pitak, I., Baltušnikas, A., Kalpokaitė-Dičkuvienė, R., Kriukiene, R., & Denafas, G. (2022). Experimental study effect of bottom ash and temperature of firing on the properties, microstructure and pore size distribution of clay bricks: A Lithuania point of view. Case studies in construction materials, 17, e01230. doi:10.1016/j.cscm.2022.e01230.
Santha Kumar, G., Saini, P. K., Deoliya, R., Mishra, A. K., & Negi, S. K. (2022). Characterization of laterite soil and its use in construction applications: A review. Resources, Conservation and Recycling Advances, 16. doi:10.1016/j.rcradv.2022.200120.
Jose, A., & Kasthurba, A. K. (2021). Laterite soil-cement blocks modified using natural rubber latex: Assessment of its properties and performance. Construction and Building Materials, 273, 121991. doi:10.1016/j.conbuildmat.2020.121991.
Bruno, A. W., Gallipoli, D., Perlot, C., & Kallel, H. (2020). Thermal performance of fired and unfired earth bricks walls. Journal of Building Engineering, 28, 101017. doi:10.1016/j.jobe.2019.101017.
Huy, N. S., Tan, N. N., & Hang, M. T. N. (2021). Environmentally friendly unburnt bricks using raw rice husk and bottom ash as fine aggregates: Physical and mechanical properties. Journal of Science and Technology in Civil Engineering, 15(1), 110-120. doi:10.31814/stce.nuce2021-15(1)-10.
Abid, R., Kamoun, N., Jamoussi, F., & El Feki, H. (2022). Fabrication and properties of compressed earth brick from local Tunisian raw materials. Bulletin of the Spanish Society of Ceramics and Glass, 61(5), 397–407. doi:10.1016/j.bsecv.2021.02.001.
DOI: 10.28991/CEJ-2024-010-12-05
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Wiphada Thepjunthra
This work is licensed under a Creative Commons Attribution 4.0 International License.