Safety Risk Assessment Model for Bridge Construction

Widi Hartono, Stefanus A. Kristiawan, Dewi Handayani, Wahyudi Sutopo

Abstract


In Indonesia, construction accidents have occurred during the construction of bridges and elevated roads, peaking in 2017. The lifting of girder beams has failed in several construction projects, and the formwork has failed during pier construction. The reasons for these work accidents are human and equipment factors, which caused material losses and loss of life. A risk assessment model for bridge construction work accidents in construction projects is proposed in this paper, with the work breakdown structure (WBS), risk breakdown structure (RBS), analytic hierarchy process (AHP), and rating being integrated to assess the risk of bridge construction work accidents. This model is expected to improve safety in bridge construction by providing effective safety planning, especially in the accident risk assessment process. The study results indicate that the WBS and RBS can outline and explain the identification of construction safety risks for bridges and provide insight into the interrelationship of construction phases and the potential risks. The relationship between the WBS and RBS is created in the form of a coupling matrix, and we identify the potential risky activities at each phase and the corresponding construction phases. The AHP can be used to calculate the weights and priorities of the WBS and analyze the magnitude of the risk index for its related risky activities; then, the rating method can be used to analyze the risk index. Girder and diaphragm installation work involves a high risk of workers falling during the erection of girders.

 

Doi: 10.28991/CEJ-2025-011-01-010

Full Text: PDF


Keywords


Safety Risk; Bridge Construction; Work Breakdown Structure (WBS); Risk Breakdown Structure (RBS); Analytic Hierarchy Process (AHP); Rating.

References


Latupeirissa, J. E., Wong, I. L. K., & Tiyow, H. C. P. (2021). Causes of work accidents and its impact on the road and bridge construction projects. IOP Conference Series: Earth and Environmental Science, 907(1), 12023. doi:10.1088/1755-1315/907/1/012023.

Mairizal, Edrizal, Ismail, M., & Mohamad Zin, R. (2019). Identifying occurrences of accident at work place in terms of occupational safety on roads and bridges infrastructure in Indonesia. IOP Conference Series: Materials Science and Engineering, 513(1), 12040. doi:10.1088/1757-899X/513/1/012040.

Yu, W., Cui, F., & Cao, X. (2023). Safety monitoring of large cantilever bridge construction based on multi-source data measurement. Fourth International Conference on Geoscience and Remote Sensing Mapping (GRSM 2022), 72. doi:10.1117/12.2668197.

Shan, Z., Qiu, L., Chen, H., & Zhou, J. (2023). Coupled Analysis of Safety Risks in Bridge Construction Based on N-K Model and SNA. Buildings, 13(9), 2178. doi:10.3390/buildings13092178.

Joshi, H. P., & Adhikari, C. R. (2024). Status of Construction Safety in Local Road Bridge Construction and its Consequences in Project Implementation: A Study in Gandaki Province, Nepal. Journal of Engineering Technology and Planning, 5(1), 84–97. doi:10.3126/joetp.v5i1.69725.

Xu, Z., Zhang, X., Xie, H., Chen, B., Li, Z., & Zhang, Y. (2023). Deformation Monitoring and Sensitivity Analysis of Under-Construction Bridges Considering Ps Optimization. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 48(1/W2-2023), 1289–1295. doi:10.5194/isprs-archives-XLVIII-1-W2-2023-1289-2023.

Hartono, W., Purnomo, A. P. H., & Sunarmasto. (2023). Risk Allocation Implementation Analysis of Public-Private Partnership for Infrastructure Project (Case Study of the Solo-Yogyakarta-NYIA Kulon Progo Highway Project). Lecture Notes in Civil Engineering, 225, 853–862. doi:10.1007/978-981-16-9348-9_76.

Feronica Damanik, M., Latief, Y., & Nugroho, D. B. (2023). Analysis of Relation Between Risk-Based Work Breakdown Structure (WBS) on Integrated Design and Construction Works of Design and Build Contract on Mechanical and Electrical Works of High Rise Building for Improving Safety Performance. International Journal of Science, Technology & Management, 4(4), 872–877. doi:10.46729/ijstm.v4i4.860.

Damanik, M. F., Latief, Y., & Nugroho, D. B. (2023). Development of Risk-based Work Breakdown Structure (WBS) Standards for Integrated Design and Construction Phase on Design-Build Contract of Mechanical and Electrical Works of High-Rise Building to Improve Construction Safety Performance. International Journal of Engineering Trends and Technology, 71(8), 119–130. doi:10.14445/22315381/IJETT-V71I8P210.

Ran, R., Wang, S., Fang, J., & Wang, Y. (2024). Safety Risk Analysis of Urban Viaduct Construction Based on Dynamic Weight. Buildings, 14(4), 1014. doi:10.3390/buildings14041014.

Bhattacharjee, K., Bugalia, N., & Mahalingam, A. (2024). An analysis of safety practices for small, medium, and large construction projects: A resilience engineering perspective. Safety Science, 169, 106330. doi:10.1016/j.ssci.2023.106330.

Hartono, W., Handayani, D., & Rhamadani, H. C. (2024). Analysis the Effect of Height on Work Accidents in High Rise Building Projects. E3S Web of Conferences, 517. doi:10.1051/e3sconf/202451705028.

Manikandan, J. (2023). Leveraging Technology in Advancing Construction Workers Safety. Recent Research Reviews Journal, 2(2), 435–445. doi:10.36548/rrrj.2023.2.015.

Elrifaee, M., Zayed, T., Ali, E., & Ali, A. H. (2024). IoT Contributions to The Safety of Construction Sites: A Comprehensive Review of Recent Advances, Limitations, and Suggestions for Future Directions. Internet of Things, 101387. doi:10.1016/j.iot.2024.101387.

Hashmi, F., Hassan, M. U., Zubair, M. U., Ahmed, K., Aziz, T., & Choudhry, R. M. (2024). Near-Miss Detection Metrics: An Approach to Enable Sensing Technologies for Proactive Construction Safety Management. Buildings, 14(4). doi:10.3390/buildings14041005.

Lin, S. S., Zhou, A., & Shen, S. L. (2024). Multi-status Bayesian network for analyzing collapse risk of excavation construction. Automation in Construction, 158, 105193. doi:10.1016/j.autcon.2023.105193.

Ma, Z., & Chen, Z. S. (2024). Mining construction accident reports via unsupervised NLP and Accimap for systemic risk analysis. Automation in Construction, 161, 105343. doi:10.1016/j.autcon.2024.105343.

Asfandiyar, & Cheema, S.M. (2023). Relationship among Safety, Quality and Productivity in Construction Projects. Journal of Development and Social Sciences, 4(I). doi:10.47205/jdss.2023(4-i)17.

Khairudin, A. H., Abas, N. H., & Kariya, N. (2021). The Practices of Occupational Safety and Health Management in Construction Industry: Case Studies of High Rise Building Projects. Journal of Structural Monitoring and Built Environment, 1(1), 2. doi:10.30880/jsmbe.2021.01.01.002.

Saha, S., Chattaraj, S., Sarkar, S., & Maji, R. (2024). Importance Of Effective Strategies for Workplace Safety Issues in Construction Sites. Futuristic Trends in Artificial Intelligence Volume 3 Book 5, 137–147, IIP Series, Chikkamagaluru, India. doi:10.58532/v3bbai5p3ch1.

Junjia, Y., Alias, A. H., Haron, N. A., & Abu Bakar, N. (2024). Identification and analysis of hoisting safety risk factors for IBS construction based on the AcciMap and cases study. Heliyon, 10(1), 23587. doi:10.1016/j.heliyon.2023.e23587.

Rasouli, S., Alipouri, Y., & Chamanzad, S. (2024). Smart Personal Protective Equipment (PPE) for construction safety: A literature review. Safety Science, 170, 106368. doi:10.1016/j.ssci.2023.106368.

Kulinan, A. S., Park, M., Aung, P. P. W., Cha, G., & Park, S. (2024). Advancing construction site workforce safety monitoring through BIM and computer vision integration. Automation in Construction, 158, 105227. doi:10.1016/j.autcon.2023.105227.

Newaz, M. T., Ershadi, M., Jefferies, M., & Davis, P. (2024). A critical review of the feasibility of emerging technologies for improving safety behavior on construction sites. Journal of Safety Research, 89, 269–287. doi:10.1016/j.jsr.2024.04.006.

Zhao, X. (2024). Construction risk management research: intellectual structure and emerging themes. International Journal of Construction Management, 24(5), 540–550. doi:10.1080/15623599.2023.2167303.

Khumpaisal, S. (2018). Risks in the Construction Project Procurement Process and the Mitigation Methods. Journal of Architectural/Planning Research and Studies (JARS), 5(2), 133–146. doi:10.56261/jars.v5i2.169168.

Priyadarshini, L., & Roy, P. (2022). Risk Assessment and Management in Construction Industry. Recent Developments in Sustainable Infrastructure (ICRDSI-2020)—Structure and Construction Management. Lecture Notes in Civil Engineering, vol 221. Springer, Singapore. doi:10.1007/978-981-16-8433-3_46.

Pahilajrai, W. D. (2021). Analysis of Risk Management in Construction Projects Using SPSS method. Recent Trends in Management and Commerce, 2(4), 153–162. doi:10.46632/rmc/2/4/22.

Jibril, A., & Shaban, B. A. (2021). Risk management in construction projects in Somalia. International Journal of Advanced Engineering, Sciences and Applications, 2(2), 38–41. doi:10.47346/ijaesa.v2i2.70.

Odimabo, O., & Oduoza, C. F. (2018). Guidelines to Aid Project Managers in Conceptualising and Implementing Risk Management in Building Projects. Procedia Manufacturing, 17, 515–522. doi:10.1016/j.promfg.2018.10.091.

Kermanimoghaddam, A. (2023). Investigating the risk of international construction projects using artificial-fuzzy neural networks technique. Technium Sustainability, 3, 36–40. doi:10.47577/sustainability.v3i.8603.

Luo, Q., Sun, C., Li, Y., Qi, Z., & Zhang, G. (2024). Applications of digital twin technology in construction safety risk management: a literature review. Engineering, Construction and Architectural Management, 3(3). doi:10.1108/ECAM-11-2023-1095.

Wu, Y., & Lu, P. (2022). Comparative Analysis and Evaluation of Bridge Construction Risk with Multiple Intelligent Algorithms. Mathematical Problems in Engineering, 2022, 1–12. doi:10.1155/2022/2638273.

Wu, Y., Wang, Y., Liu, H., Xie, L., Jiao, L., & Lu, P. (2024). Risk assessment of bridge construction investigated using random forest algorithm. Scientific Reports, 14(1), 20964. doi:10.1038/s41598-024-72051-5.

Chen, J., Li, K., & Yang, S. (2022). Electric Vehicle Fire Risk Assessment Based on WBS-RBS and Fuzzy BN Coupling. Mathematics, 10(20), 3799. doi:10.3390/math10203799.

Yan, H., Gao, C., Elzarka, H., Mostafa, K., & Tang, W. (2019). Risk assessment for construction of urban rail transit projects. Safety Science, 118, 583–594. doi:10.1016/j.ssci.2019.05.042.

Zhang, L. W., & Zhao, Y. G. (2024). Linear Moments-Based Monte Carlo Simulation for Reliability Analysis with Unknown Probability Distributions. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 10(2). doi:10.1115/1.4064702.

Cai, X., Huang, J., & Peng, C. (2023). Research on Construction Workers’ Safety Risk Sharing in Tunneling Projects Based on a Two-Mode Network: A Case Study of the Shangwu Tunnel. Buildings, 13(11), 2689. doi:10.3390/buildings13112689.

Yan, K., Jin, L., & Yu, X. (2024). Ordered weighted evaluation method of lifting operation safety risks considering coupling effect. Scientific Reports, 14(1), 5776. doi:10.1038/s41598-024-56039-9.

Fu, T., Shi, K., Shi, R., Lu, Z., & Zhang, J. (2024). Risk Assessment of TBM Construction Based on a Matter-Element Extension Model with Optimized Weight Distribution. Applied Sciences (Switzerland), 14(13), 5911. doi:10.3390/app14135911.

Moon, H., Mirmotalebi, S., Jang, Y., Ahn, Y., & Kwon, N. (2024). Risk Evaluation of Radioactive Concrete Structure Decommissioning in Nuclear Power Plants Using Fuzzy-AHP. Buildings, 14(6), 1–23. doi:10.3390/buildings14061536.

Saraswati, N. N., Juliastuti, Haripriambodo, T., & Kesuma, L. M. (2023). The analysis of cofferdam construction based on risk assessment using HIRARC and FMEA methods. IOP Conference Series: Earth and Environmental Science, 1169(1), 12023. doi:10.1088/1755-1315/1169/1/012023.

Güney, G., & Kahraman, B. (2022). Implementation of the analytic hierarchy process (AHP) and Fine–Kinney method (FKM) against risk factors to determine the total cost of occupational health and safety precautions in environmental research laboratories. International Journal of Occupational Safety and Ergonomics, 28(4), 2606–2622. doi:10.1080/10803548.2021.2010969.

Qiu, C., & Li, X. (2023). Blended Analysis of Occupational Safety Hazards and Risk Assessment Approach in the Construction Industry. Proceedings of the Canadian Society of Civil Engineering Annual Conference 2021. CSCE 2021. Lecture Notes in Civil Engineering, vol 251. Springer, Singapore. doi:10.1007/978-981-19-1029-6_38.

Qiu, C., & Li, X. (2022). Blended analysis of occupational safety hazards and digital transformation of risk assessment in construction industries. Canadian Journal of Civil Engineering, 50(3), 184–196. doi:10.1139/cjce-2022-0036.

Zhang, S., Yu, B., Li, R., & Wan, Y. (2024). Research on the Intelligent Construction and Development of Bridge Engineering Safety Management. E3S Web of Conferences, 565, 3013. doi:10.1051/e3sconf/202456503013.

Li, G., Ran, R., Fang, J., Peng, H., & Wang, S. (2021). Early warning for the construction safety risk of bridge projects using a RS-SSA-LSSVM model. Advances in Civil Engineering, 2021. doi:10.1155/2021/4449451.

Yuan, H., Zhang, W., & You, J. (2018). Assessment of Bridge Construction Safety Risk based on Improved Cloud Model. Journal of Engineering Studies, 10(06), 600–606. doi:10.3724/sp.j.1224.2018.00600.

Albrechtsen, E., Solberg, I., & Svensli, E. (2019). The application and benefits of job safety analysis. Safety Science, 113, 425–437. doi:10.1016/j.ssci.2018.12.007.

Chen, Q., Long, D., Yang, C., & Xu, H. (2023). Knowledge Graph Improved Dynamic Risk Analysis Method for Behavior-Based Safety Management on a Construction Site. Journal of Management in Engineering, 39(4), 5306. doi:10.1061/jmenea.meeng-5306.

Yang, Y. (2024). Safety Risk Assessment Analysis of Bridge Construction Using Backpropagation Neural Network. Journal of Architectural Research and Development, 8(2), 24–30. doi:10.26689/jard.v8i2.6386.

Jian, S. (2020). The application of BIM technology in road and bridge construction management. IOP Conference Series: Earth and Environmental Science, 587(1), 12002. doi:10.1088/1755-1315/587/1/012002.

Liu, W., Liu, F., Fang, W., & Love, P. E. D. (2024). Causal discovery and reasoning for geotechnical risk analysis. Reliability Engineering & System Safety, 241, 109659. doi:10.1016/j.ress.2023.109659.

Hai, N., Gong, D., & Dai, Z. (2024). Target spectrum-based risk analysis model for utility tunnel O&M in multiple scenarios and its application. Reliability Engineering & System Safety, 242, 109777. doi:10.1016/j.ress.2023.109777.

Zhang, P., Zhang, Z. J., & Gong, D. Q. (2024). An improved failure mode and effect analysis method for group decision-making in utility tunnels construction project risk evaluation. Reliability Engineering & System Safety, 244, 109943. doi:10.1016/j.ress.2024.109943.

Zio, E., & Miqueles, L. (2024). Digital twins in safety analysis, risk assessment and emergency management. Reliability Engineering & System Safety, 246, 110040. doi:10.1016/j.ress.2024.110040.

Musarat, M. A., Alaloul, W. S., Zainuddin, S. M. B., Qureshi, A. H., & Maqsoom, A. (2024). Digitalization in Malaysian construction industry: Awareness, challenges and opportunities. Results in Engineering, 21, 102013. doi:10.1016/j.rineng.2024.102013.

Yang, C., Wang, Q., Wei, R., & Lu, K. (2018). Research on FAHP Method Based on Highway Bridge Safety. Engineering, 10(06), 336–344. doi:10.4236/eng.2018.106024.

Li, Q., Lei, J., & Zhang, H. (2020). Risk estimation of large complex bridge construction based on factor analysis. E3S Web of Conferences, 218, 4011. doi:10.1051/e3sconf/202021804011.

Sobieraj, J., & Metelski, D. (2022). Project Risk in the Context of Construction Schedules—Combined Monte Carlo Simulation and Time at Risk (TaR) Approach: Insights from the Fort Bema Housing Estate Complex. Applied Sciences (Switzerland), 12(3), 1044. doi:10.3390/app12031044.

Tsair Chang, J., & Hsiao, H. C. (2019). Analytic Hierarchy Process for Evaluation Weights on Occupational Safety and Hygiene Items in the Bridge Construction Site. IOP Conference Series: Earth and Environmental Science, 233(3), 32031. doi:10.1088/1755-1315/233/3/032031.

Gunduz, M., & Alfar, M. (2019). Integration of innovation through analytical hierarchy process (Ahp) in project management and planning. Technological and Economic Development of Economy, 25(2), 258–276. doi:10.3846/tede.2019.8063.

Wu, C., Yan, Y., Yang, S., Huang, Y., Ren, X., Wu, H., Dong, E., & Zhu, S. (2021). Research on safety risk evaluation model of bridge construction based on analytic hierarchy process. Journal of Physics: Conference Series, 2005(1). doi:10.1088/1742-6596/2005/1/012183.

Su, H., Guo, C., Wang, Z., Han, T., Kamanda, D. B., Su, F., & Shang, L. (2024). Research on safety condition assessment methodology for single tower steel box girder suspension bridges over the sea based on improved AHP-fuzzy comprehensive evaluation. Scientific Reports, 14(1), 1–21. doi:10.1038/s41598-024-61579-1.

Koohathongsumrit, N., & Meethom, W. (2024). Risk analysis in underground tunnel construction with tunnel boring machines using the Best–Worst method and data envelopment analysis. Heliyon, 10(1), 23486. doi:10.1016/j.heliyon.2023.e23486.

Hwang, S., & Choi, M. (2024). Integrative building safety evaluation to mitigate disaster risks: a case study on public-use buildings in Seoul. Journal of Asian Architecture and Building Engineering, 1–15. doi:10.1080/13467581.2024.2329360.

Bayhun, S., & Demirel, N. Ç. (2024). Hazard Identification and Risk Assessment for Sustainable Shipyard Floating Dock Operations: An Integrated Spherical Fuzzy Analytical Hierarchy Process and Fuzzy CoCoSo Approach. Sustainability (Switzerland) , 16(13). doi:10.3390/su16135790.

Cheng, F., & Liu, Y. (2021). Evaluation of risk for construction safety of fabricated buildings based on analytic hierarchy process. IOP Conference Series: Earth and Environmental Science, 791(1), 8–13. doi:10.1088/1755-1315/791/1/012063.

Huang, Z., Zhao, W., Zhang, Y., Yao, X., Jia, Q., Wang, H., Le, T., Song, D., & Gao, Y. (2020). Comprehensive Safety Evaluation of Emergency Training for Building Ruins Scenario Based on Analytic Hierarchy Process-Grey Fuzzy Evaluation. IEEE Access, 8, 147776–147789. doi:10.1109/ACCESS.2020.3015829.

Darko, A., Chan, A. P. C., Ameyaw, E. E., Owusu, E. K., Pärn, E., & Edwards, D. J. (2019). Review of application of analytic hierarchy process (AHP) in construction. International Journal of Construction Management, 19(5), 436–452. doi:10.1080/15623599.2018.1452098.

Du, M., & Han, T. (2021). Research on Construction Engineering Safety Management. Foreign Language Science and Technology Journal Database Engineering Technology, 507852. doi:10.47939/et.v2i11.04.

Yang, Y., Chen, Y., & Tang, Z. (2021). Analysis of the safety factors of municipal road undercrossing existing bridge based on fuzzy analytic hierarchy process methods. Transportation Research Record, 2675(12), 915–928. doi:10.1177/03611981211031887.

Zhang, Q., Song, Y., & Shi, J. (2021). Network Model and Analysis of Construction Project Safety Risk and Stakeholder Based on SNA. Proceedings of the 2021 International Conference on Social Sciences and Big Data Application (ICSSBDA 2021), 614, 249–260. doi:10.2991/assehr.k.211216.047.

Cerezo-Narváez, A., Pastor-Fernández, A., Otero-Mateo, M., & Ballesteros-Pérez, P. (2020). Integration of cost and work breakdown structures in the management of construction projects. Applied Sciences (Switzerland), 10(4), 1–33. doi:10.3390/app10041386.

Aydın, M. C., Sevgi Birincioğlu, E., Büyüksaraç, A., & Işık, E. (2024). Earthquake Risk Assessment Using GIS-Based Analytical Hierarchy Process (AHP): The Case of Bitlis Province (Türkiye). International Journal of Environment and Geoinformatics, 11(1), 1–9. doi:10.30897/ijegeo.1306580.

Rodrigues de Oliveira, B., & Duarte, M. A. Q. (2024). Automatic and Semi-automatic Analytic Hierarchy Process (AHP). Trends in Agricultural and Environmental Sciences, e240009. doi:10.46420/taes.e240009.

Liang, B., Zhang, S., Li, D., Zhai, Y., Wang, F., Shi, L., & Wang, Y. (2021). Safety Risk Evaluation of Construction Site Based on Unascertained Measure and Analytic Hierarchy Process. Discrete Dynamics in Nature and Society, 2021, 1–14. doi:10.1155/2021/7172938.

Bilașco, Ștefan, & Man, T. C. (2024). GIS-Based Spatial Analysis Model for Assessing Impact and Cumulative Risk in Road Traffic Accidents via Analytic Hierarchy Process (AHP)—Case Study: Romania. Applied Sciences (Switzerland), 14(6), 2643. doi:10.3390/app14062643.

Li, Q., Qian, H., Pei, J., Wang, S., & Lei, J. (2020). Safety Risk Analysis of Bridge Rhombic Hanging Basket Construction Based on WBS-RBS and Rough Set Theory. IOP Conference Series: Materials Science and Engineering, 780(7), 72033. doi:10.1088/1757-899X/780/7/072033.

Rianty, M., Latief, Y., & Riantini, L. S. (2018). Development of risk-based standardized WBS (Work Breakdown Structure) for quality planning of high rise building architectural works. MATEC Web of Conferences, 159. doi:10.1051/matecconf/201815901019.

Hidayah, D. N., Latief, Y., & Riantini, L. S. (2018). Development of work breakdown structure standard based on risk for safety planning on dam construction work. IOP Conference Series: Materials Science and Engineering, 420(1), 012003. doi:10.1088/1757-899X/420/1/012003.

Jeong, J., & Jeong, J. (2021). Novel approach of the integrated work & risk breakdown structure for identifying the hierarchy of fatal incident in construction industry. Journal of Building Engineering, 41, 102406. doi:10.1016/j.jobe.2021.102406.

P Asrani, N., Venkatasubramanian, C., Muthu, D., S, P., & Ramakrishnan, K. (2018). Risk Management – Decision Making Using Analytical Hierarchy Process. International Journal of Engineering & Technology, 7(3.12), 188. doi:10.14419/ijet.v7i3.12.15917.

Ghuzdewan, T., & Damanik, P. (2019). Analysis of accident in Indonesian construction projects. MATEC Web of Conferences, 258, 02021. doi:10.1051/matecconf/201925802021.

Bria, T. A., Chen, W. T., Muhammad, M., & Rantelembang, M. B. (2024). Analysis of Fatal Construction Accidents in Indonesia—A Case Study. Buildings, 14(4), 1010. doi:10.3390/buildings14041010.

Ajith, S., Sivapragasam, C., & Arumugaprabu, V. (2019). Analysis on constructional hazards, risk assessment techniques and safety helmets in construction sites. AIP Conference Proceedings, 2128, 50013. doi:10.1063/1.5117985.

Chen, T.-T., & Wang, C. C. (2014). Falling Risk Assessment of Advanced Shoring Method Bridge Construction Projects. Design, Construction, and Maintenance of Bridges, 14–21. doi:10.1061/9780784478516.002.

Chen, T. T., & Wang, C. H. (2017). Fall risk assessment of bridge construction using Bayesian network transferring from fault tree analysis. Journal of Civil Engineering and Management, 23(2), 273–282. doi:10.3846/13923730.2015.1068841.

Nugraha, K. O. P. P., & Rifai, A. P. (2023). Convolutional Neural Network for Identification of Personal Protective Equipment Usage Compliance in Manufacturing Laboratory. Jurnal Ilmiah Teknik Industri, 22(1), 11–24. doi:10.23917/jiti.v22i1.21826.

Guo, S., He, J., Li, J., & Tang, B. (2020). Exploring the impact of unsafe behaviors on building construction accidents using a Bayesian network. International Journal of Environmental Research and Public Health, 17(1), 221. doi:10.3390/ijerph17010221.

Dodoo, J. E., & Al-Samarraie, H. (2019). Factors leading to unsafe behavior in the twenty first century workplace: a review. Management Review Quarterly, 69(4), 391–414. doi:10.1007/s11301-019-00157-6.

Mika, F., & Dunger, D. (2018). Observations of employees - a condition for improving the culture of safety at work. Sigurnost, 60(3), 261–266. doi:10.31306/s.60.3.1. (In Bosnian).

Paramitha, P. E. (2021). Digitalizing and Geo-Enabling Observation Cards to Improve Hazard Mitigation and Better Risk Assessment. Proc of the Indonesian Petroleum Association 44th Annual Convention and Exhibition, IPA21-O-208. doi:10.29118/ipa21-o-208.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-01-010

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Widi Hartono, Stefanus Adi Kristiawan, Dewi Handayani, Wahyudi Sutopo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message