Shaking-Table Test on a Multi-Story Continuous Vibration-Control System Employing Pulley Amplification Mechanism

Ryo Majima, Yasuo Yamasaki, Taiki Saito

Abstract


This study proposes an innovative passive vibration-control system, named the Pulley Damper Multi-story System (PDMAS), which incorporates pulley tackles installed at multiple stories in the successive stories to amplify inter-story displacement. This configuration significantly enhances the energy absorption efficiency of the linked dampers at the middle of the cable by utilizing the cumulatively amplified story displacements via a continuously stretched cable across the entire structure. The proposed system shows notable potential for controlling responses induced by higher vibration modes by customizing the wire installation layout. The aim of this study is to introduce PDMAS and to investigate its seismic-mitigation effectiveness. As a primary investigation of this new system, comparative experimental studies were conducted through shaking-table tests on nine specimens featuring various cable layouts optimized for the first and second structural vibration modes, with or without dampers, under harmonic waves, white-noise waves, and simulated seismic waves. The experimental results demonstrate that the PDMAS effectively accommodates the cumulative amplified story displacement across the structure to match theoretical damper values. Furthermore, the specimens employing PDMAS with a wire layout optimized for the first structural mode reduced both acceleration and displacement by nearly half compared to specimens without PDMAS.

 

Doi: 10.28991/CEJ-2025-011-01-02

Full Text: PDF


Keywords


Passive Damper; Displacement-Amplification System; Pulley Mechanism; Nonlinear Viscous Damper; Shaking-Table Test; Shear-Deformation Specimen.

References


Kavyashree, B., Patil, S., & Rao, V. S. (2021). Review on vibration control in tall buildings: from the perspective of devices and applications. International Journal of Dynamics and Control, 9(3), 1316–1331. doi:10.1007/s40435-020-00728-6.

Symans, M. D., Charney, F. A., Whittaker, A. S., Constantinou, M. C., Kircher, C. A., Johnson, M. W., & McNamara, R. J. (2008). Energy Dissipation Systems for Seismic Applications: Current Practice and Recent Developments. Journal of Structural Engineering, 134(1), 3–21. doi:10.1061/(asce)0733-9445(2008)134:1(3).

Lagos, R., Kupfer, M., Lindenberg, J., Bonelli, P., Saragoni, R., Guendelman, T., Massone, L., Boroschek, R., & Yañez, F. (2012). Seismic performance of high-rise concrete buildings in Chile. International Journal of High-Rise Buildings, 1(3), 181-194.

Constantinou, M. C., Tsopelas, P., Hammel, W., & Sigaher, A. N. (2001). Toggle-Brace-Damper Seismic Energy Dissipation Systems. Journal of Structural Engineering, 127(2), 105–112. doi:10.1061/(asce)0733-9445(2001)127:2(105).

Şigaher, A. N., & Constantinou, M. C. (2003). Scissor-jack-damper energy dissipation system. Earthquake Spectra, 19(1), 133–158. doi:10.1193/1.1540999.

Kang, J. Do, & Tagawa, H. (2014). Experimental evaluation of dynamic characteristics of seesaw energy dissipation system for vibration control of structures. Earthquake Engineering and Structural Dynamics, 43(12), 1889–1895. doi:10.1002/eqe.2420.

Feng, H., Zhou, F., Ge, H., Zhu, H., & Zhou, L. (2021). Energy dissipation enhancement through multi-toggle brace damper systems for mitigating dynamic responses of structures. Structures, 33, 2487–2499. doi:10.1016/j.istruc.2021.05.068.

Alhasan, A. A., Vafaei, M., & C. Alih, S. (2025). Cyclic response and mechanical model of a rotational viscoelastic damper. Engineering Structures, 322. doi:10.1016/j.engstruct.2024.119117.

Lie, W., Zhou, Y., Zhang, Q., Hong, J., & Chen, Z. (2025). Potential use of rotational metallic dampers for seismic enhancement of infilled RC frames with open first story. Engineering Structures, 322. doi:10.1016/j.engstruct.2024.119080.

Wu, X., Ji, P., Liu, C., Li, L., Zhao, Z., & Zhang, Z. (2024). Experimental and numerical investigation of a novel passive energy dissipation system with viscoelastic damper and angle-reaction controller. Soil Dynamics and Earthquake Engineering, 187. doi:10.1016/j.soildyn.2024.108939.

Ma, R., Cheng, Z., Zhang, X., Bi, K., & Jiang, S. (2024). Mechanical behaviors and seismic performance of a novel rotary amplification friction damper (RAFD): Experimental and analytical studies. Journal of Constructional Steel Research, 223. doi:10.1016/j.jcsr.2024.109051.

Pekcan, G., Mander, J. B., & Chen, S. S. (2000). Experiments on Steel MRF Building with Supplemental Tendon System. Journal of Structural Engineering, 126(4), 437–444. doi:10.1061/(asce)0733-9445(2000)126:4(437).

Pekcan, G., Mander, J. B., & Chen, S. S. (2000). Balancing Lateral Loads Using Tendon-Based Supplemental Damping System. Journal of Structural Engineering, 126(8), 896–905. doi:10.1061/(asce)0733-9445(2000)126:8(896).

Sorace, S., & Terenzi, G. (2011). The damped cable system for seismic protection of frame structures — Part I: General concepts, testing and modeling. Earthquake Engineering & Structural Dynamics, 41(5), 915–928. doi:10.1002/eqe.1166.

Sorace, S., & Terenzi, G. (2012). The damped cable system for seismic protection of frame structures - Part II: Design and application. Earthquake Engineering and Structural Dynamics, 41(5), 929–947. doi:10.1002/eqe.1165.

Choi, H., & Kim, J. (2010). New installation scheme for viscoelastic dampers using cables. Canadian Journal of Civil Engineering, 37(9), 1201–1211. doi:10.1139/L10-068.

Kurata, M., Leon, R. T., & DesRoches, R. (2012). Rapid Seismic Rehabilitation Strategy: Concept and Testing of Cable Bracing with Couples Resisting Damper. Journal of Structural Engineering, 138(3), 354–362. doi:10.1061/(asce)st.1943-541x.0000401.

Mehrabi, M. H., Ibrahim, Z., Ghodsi, S. S., & Suhatril, M. (2019). Seismic characteristics of X-cable braced frames bundled with a pre-compressed spring. Soil Dynamics and Earthquake Engineering, 116, 732–746. doi:10.1016/j.soildyn.2018.10.014.

Hernández, F., Astroza, R., Beltrán, J. F., Zhang, X., & Mercado, V. (2022). A experimental study of a cable-pulleys spring-damper energy dissipation system for buildings. Journal of Building Engineering, 51, 104034. doi:10.1016/j.jobe.2022.104034.

Kang, J., Xue, S., Xie, L., Tang, H., & Zhang, R. (2023). Multi-modal seismic control design for multi-storey buildings using cross-layer installed cable-bracing inerter systems: Part 1 theoretical treatment. Soil Dynamics and Earthquake Engineering, 164. doi:10.1016/j.soildyn.2022.107639.

Saito, T., Maegawa, T., Denno, S., Sakai, S., Uchikawa, M., Kanagawa, M., & Ryujin, H. (2017). New seismic response control system using block and tackle. 16th World Conference on Earthquake Engineering, 9-13 January, 2017, Santiago, Chile.

Jung, I. Y., Ryu, J., Oh, J., Ryu, D., & Ko, H. J. (2021). Experimental investigation on displacement amplification mechanism of steel wire rope-pulley damping systems with viscous damper. Engineering Structures, 248, 113206. doi:10.1016/j.engstruct.2021.113206.

Rouhani, B., Aghayari, R., & Mousavi, S. A. (2024). Fluid viscous dampers in tackle-damper configuration: An experimental study. Engineering Structures, 321. doi:10.1016/j.engstruct.2024.118927.

Majima, R., Hayashi, K., & Saito, T. (2022). Development of new passive vibration control system in coupled structures with block and tackle. Soil Dynamics and Earthquake Engineering, 159, 107319. doi:10.1016/j.soildyn.2022.107319.

Chung, Y.-L., Nagae, T., Hitaka, T., & Nakashima, M. (2010). Seismic Resistance Capacity of High-Rise Buildings Subjected to Long-Period Ground Motions: E-Defense Shaking Table Test. Journal of Structural Engineering, 136(6), 637–644. doi:10.1061/(asce)st.1943-541x.0000161.

Kaneko, M., Kumagai, H., & Okada, K. (2016). Development of 3-Dimensional Large-Scale Shaking Table and 3-Dimensional Long-stroke Shaking Table. Journal of Japan Association for Earthquake Engineering, 16(9), 100-117. doi:10.5610/jaee.16.9_100.

Mukai, Y., & Fujitani, H. (2019). Development of Resilient Seismic Response Control with a Semi-active System: Seismic Isolation, Structural Health Monitoring, and Performance Based Seismic Design in Earthquake Engineering, Springer, Cham, Switzerland. doi:10.1007/978-3-319-93157-9_2.

Tani, T., Ishikawa, Y., Maseki, R., & Nakajima, T. (2023). Shaking Table Test of the High-Damping Structural System with Multi-Story Shear Walls and Dampers. AIJ Journal of Technology and Design, 29(71), 62–67. doi:10.3130/AIJT.29.62.

Katsimpini, P. S., Askouni, P. K., Papagiannopoulos, G. A., & Karabalis, D. L. (2020). Seismic drift response of seesaw-braced and buckling-restrained braced steel structures: A comparison study. Soil Dynamics and Earthquake Engineering, 129, 105925. doi:10.1016/j.soildyn.2019.105925.

Mousavi, S. A., & Zahrai, S. M. (2017). Slack free connections to improve seismic behavior of tension-only braces: An experimental and analytical study. Engineering Structures, 136, 54–67. doi:10.1016/j.engstruct.2017.01.009.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-01-02

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Ryo Majima, Yasuo Yamasaki, Taiki Saito

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message