Shaking-Table Test on a Multi-Story Continuous Vibration-Control System Employing Pulley Amplification Mechanism
Abstract
Doi: 10.28991/CEJ-2025-011-01-02
Full Text: PDF
Keywords
References
Kavyashree, B., Patil, S., & Rao, V. S. (2021). Review on vibration control in tall buildings: from the perspective of devices and applications. International Journal of Dynamics and Control, 9(3), 1316–1331. doi:10.1007/s40435-020-00728-6.
Symans, M. D., Charney, F. A., Whittaker, A. S., Constantinou, M. C., Kircher, C. A., Johnson, M. W., & McNamara, R. J. (2008). Energy Dissipation Systems for Seismic Applications: Current Practice and Recent Developments. Journal of Structural Engineering, 134(1), 3–21. doi:10.1061/(asce)0733-9445(2008)134:1(3).
Lagos, R., Kupfer, M., Lindenberg, J., Bonelli, P., Saragoni, R., Guendelman, T., Massone, L., Boroschek, R., & Yañez, F. (2012). Seismic performance of high-rise concrete buildings in Chile. International Journal of High-Rise Buildings, 1(3), 181-194.
Constantinou, M. C., Tsopelas, P., Hammel, W., & Sigaher, A. N. (2001). Toggle-Brace-Damper Seismic Energy Dissipation Systems. Journal of Structural Engineering, 127(2), 105–112. doi:10.1061/(asce)0733-9445(2001)127:2(105).
Şigaher, A. N., & Constantinou, M. C. (2003). Scissor-jack-damper energy dissipation system. Earthquake Spectra, 19(1), 133–158. doi:10.1193/1.1540999.
Kang, J. Do, & Tagawa, H. (2014). Experimental evaluation of dynamic characteristics of seesaw energy dissipation system for vibration control of structures. Earthquake Engineering and Structural Dynamics, 43(12), 1889–1895. doi:10.1002/eqe.2420.
Feng, H., Zhou, F., Ge, H., Zhu, H., & Zhou, L. (2021). Energy dissipation enhancement through multi-toggle brace damper systems for mitigating dynamic responses of structures. Structures, 33, 2487–2499. doi:10.1016/j.istruc.2021.05.068.
Alhasan, A. A., Vafaei, M., & C. Alih, S. (2025). Cyclic response and mechanical model of a rotational viscoelastic damper. Engineering Structures, 322. doi:10.1016/j.engstruct.2024.119117.
Lie, W., Zhou, Y., Zhang, Q., Hong, J., & Chen, Z. (2025). Potential use of rotational metallic dampers for seismic enhancement of infilled RC frames with open first story. Engineering Structures, 322. doi:10.1016/j.engstruct.2024.119080.
Wu, X., Ji, P., Liu, C., Li, L., Zhao, Z., & Zhang, Z. (2024). Experimental and numerical investigation of a novel passive energy dissipation system with viscoelastic damper and angle-reaction controller. Soil Dynamics and Earthquake Engineering, 187. doi:10.1016/j.soildyn.2024.108939.
Ma, R., Cheng, Z., Zhang, X., Bi, K., & Jiang, S. (2024). Mechanical behaviors and seismic performance of a novel rotary amplification friction damper (RAFD): Experimental and analytical studies. Journal of Constructional Steel Research, 223. doi:10.1016/j.jcsr.2024.109051.
Pekcan, G., Mander, J. B., & Chen, S. S. (2000). Experiments on Steel MRF Building with Supplemental Tendon System. Journal of Structural Engineering, 126(4), 437–444. doi:10.1061/(asce)0733-9445(2000)126:4(437).
Pekcan, G., Mander, J. B., & Chen, S. S. (2000). Balancing Lateral Loads Using Tendon-Based Supplemental Damping System. Journal of Structural Engineering, 126(8), 896–905. doi:10.1061/(asce)0733-9445(2000)126:8(896).
Sorace, S., & Terenzi, G. (2011). The damped cable system for seismic protection of frame structures — Part I: General concepts, testing and modeling. Earthquake Engineering & Structural Dynamics, 41(5), 915–928. doi:10.1002/eqe.1166.
Sorace, S., & Terenzi, G. (2012). The damped cable system for seismic protection of frame structures - Part II: Design and application. Earthquake Engineering and Structural Dynamics, 41(5), 929–947. doi:10.1002/eqe.1165.
Choi, H., & Kim, J. (2010). New installation scheme for viscoelastic dampers using cables. Canadian Journal of Civil Engineering, 37(9), 1201–1211. doi:10.1139/L10-068.
Kurata, M., Leon, R. T., & DesRoches, R. (2012). Rapid Seismic Rehabilitation Strategy: Concept and Testing of Cable Bracing with Couples Resisting Damper. Journal of Structural Engineering, 138(3), 354–362. doi:10.1061/(asce)st.1943-541x.0000401.
Mehrabi, M. H., Ibrahim, Z., Ghodsi, S. S., & Suhatril, M. (2019). Seismic characteristics of X-cable braced frames bundled with a pre-compressed spring. Soil Dynamics and Earthquake Engineering, 116, 732–746. doi:10.1016/j.soildyn.2018.10.014.
Hernández, F., Astroza, R., Beltrán, J. F., Zhang, X., & Mercado, V. (2022). A experimental study of a cable-pulleys spring-damper energy dissipation system for buildings. Journal of Building Engineering, 51, 104034. doi:10.1016/j.jobe.2022.104034.
Kang, J., Xue, S., Xie, L., Tang, H., & Zhang, R. (2023). Multi-modal seismic control design for multi-storey buildings using cross-layer installed cable-bracing inerter systems: Part 1 theoretical treatment. Soil Dynamics and Earthquake Engineering, 164. doi:10.1016/j.soildyn.2022.107639.
Saito, T., Maegawa, T., Denno, S., Sakai, S., Uchikawa, M., Kanagawa, M., & Ryujin, H. (2017). New seismic response control system using block and tackle. 16th World Conference on Earthquake Engineering, 9-13 January, 2017, Santiago, Chile.
Jung, I. Y., Ryu, J., Oh, J., Ryu, D., & Ko, H. J. (2021). Experimental investigation on displacement amplification mechanism of steel wire rope-pulley damping systems with viscous damper. Engineering Structures, 248, 113206. doi:10.1016/j.engstruct.2021.113206.
Rouhani, B., Aghayari, R., & Mousavi, S. A. (2024). Fluid viscous dampers in tackle-damper configuration: An experimental study. Engineering Structures, 321. doi:10.1016/j.engstruct.2024.118927.
Majima, R., Hayashi, K., & Saito, T. (2022). Development of new passive vibration control system in coupled structures with block and tackle. Soil Dynamics and Earthquake Engineering, 159, 107319. doi:10.1016/j.soildyn.2022.107319.
Chung, Y.-L., Nagae, T., Hitaka, T., & Nakashima, M. (2010). Seismic Resistance Capacity of High-Rise Buildings Subjected to Long-Period Ground Motions: E-Defense Shaking Table Test. Journal of Structural Engineering, 136(6), 637–644. doi:10.1061/(asce)st.1943-541x.0000161.
Kaneko, M., Kumagai, H., & Okada, K. (2016). Development of 3-Dimensional Large-Scale Shaking Table and 3-Dimensional Long-stroke Shaking Table. Journal of Japan Association for Earthquake Engineering, 16(9), 100-117. doi:10.5610/jaee.16.9_100.
Mukai, Y., & Fujitani, H. (2019). Development of Resilient Seismic Response Control with a Semi-active System: Seismic Isolation, Structural Health Monitoring, and Performance Based Seismic Design in Earthquake Engineering, Springer, Cham, Switzerland. doi:10.1007/978-3-319-93157-9_2.
Tani, T., Ishikawa, Y., Maseki, R., & Nakajima, T. (2023). Shaking Table Test of the High-Damping Structural System with Multi-Story Shear Walls and Dampers. AIJ Journal of Technology and Design, 29(71), 62–67. doi:10.3130/AIJT.29.62.
Katsimpini, P. S., Askouni, P. K., Papagiannopoulos, G. A., & Karabalis, D. L. (2020). Seismic drift response of seesaw-braced and buckling-restrained braced steel structures: A comparison study. Soil Dynamics and Earthquake Engineering, 129, 105925. doi:10.1016/j.soildyn.2019.105925.
Mousavi, S. A., & Zahrai, S. M. (2017). Slack free connections to improve seismic behavior of tension-only braces: An experimental and analytical study. Engineering Structures, 136, 54–67. doi:10.1016/j.engstruct.2017.01.009.
DOI: 10.28991/CEJ-2025-011-01-02
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Ryo Majima, Yasuo Yamasaki, Taiki Saito

This work is licensed under a Creative Commons Attribution 4.0 International License.