Experimental Investigation of Single and Intermittent Light Non-Aqueous Phase Liquid Spills Under Dynamic Groundwater

Doaa F. Almaliki, Harris Ramli, Ali Zaiter

Abstract


The groundwater contamination from petroleum by-products represented in Light Non-Aqueous Liquid (LNAPL) under groundwater table fluctuations has become a serious environmental problem. For this reason, developing a rapid response strategy incorporating experimental characterization of LNAPL distribution trajectories is crucial for assessing the threats of LNAPL contaminants in the subsurface environment. In this study, the influence of various LNAPL spills in a porous medium under dynamic groundwater conditions was investigated using the Simplified Image Analysis Method (SIAM). Single and intermittent LNAPL (diesel) spills of total volume (400 and 800 ml) were examined in a river sand ‎two-dimensional tank (70 cm × 70 cm × 3.5 cm) under the effect of groundwater table fluctuation. The results indicated that the contaminant was distributed above h=28 cm in the 400 ml LNAPL spill. However, it migrated below h=28 cm, and its saturation reached 36% when the LNAPL volume raised to 800 ml. The LNAPL saturation in the case of four LNAPL intermittent spills was more evenly distributed through the tank depth than in the cases of a single spill of 800 ml and two intermittent spills of 400 ml. Furthermore, LNAPL migrated to a larger depth in the system (h=18.5 cm) only in the case of four LNAPL intermittent spills and under groundwater table fluctuation, which poses a significant threat to the groundwater. This study highlights the importance of the effect of various LNAPL spills under dynamic groundwater conditions, which can offer valuable guidance for developing remediation schemes.

 

Doi: 10.28991/CEJ-2025-011-01-017

Full Text: PDF


Keywords


LNAPLs; Repetitive Spills; Diesel; Groundwater Table Fluctuation; Saturation; Migration.

References


Vuruna, M., Veličković, Z., Perić, S., Bogdanov, J., Ivanković, N., & Bučko, M. (2017). The influence of atmospheric conditions on the migration of diesel fuel spilled in soil. Archives of Environmental Protection, 43(1), 73–79. doi:10.1515/aep-2017-0004.

Maire, J., Joubert, A., Kaifas, D., Invernizzi, T., Marduel, J., Colombano, S., Cazaux, D., Marion, C., Klein, P. Y., Dumestre, A., & Fatin-Rouge, N. (2018). Assessment of flushing methods for the removal of heavy chlorinated compounds DNAPL in an alluvial aquifer. Science of the Total Environment, 612, 1149–1158. doi:10.1016/j.scitotenv.2017.08.309.

He, Z., Liang, F., Meng, J., & Li, N. (2022). Effects of groundwater fluctuation on migration characteristics and representative elementary volume of entrapped LNAPL. Journal of Hydrology, 610. doi:10.1016/j.jhydrol.2022.127833.

‏Newell, C. J., Acree, S. D., Ross, R. R., & Huling, S. G. (1995). Ground Water Issue. United States Environmental Protection Agency, EPA/540/S-95/500.

Luciano, A., Viotti, P., & Papini, M. P. (2010). Laboratory investigation of DNAPL migration in porous media. Journal of Hazardous Materials, 176(1–3), 1006–1017. doi:10.1016/j.jhazmat.2009.11.141.

Agaoglu, B., Copty, N. K., Scheytt, T., & Hinkelmann, R. (2015). Interphase mass transfer between fluids in subsurface formations: A review. Advances in Water Resources, 79, 162–194. doi:10.1016/j.advwatres.2015.02.009.

Dalhat, M. N. (2005). Effect of rate of water table rise on LNAPL entrapment in uniform and well-graded sands. Ph.D. Thesis, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.

Dobson, R., Schroth, M. H., & Zeyer, J. (2007). Effect of water-table fluctuation on dissolution and biodegradation of a multi-component, light nonaqueous-phase liquid. Journal of Contaminant Hydrology, 94(3–4), 235–248. doi:10.1016/j.jconhyd.2007.07.007.

Gomo, M. (2009). Site characterisation of LNAPL-contaminated fractured-rock aquifer. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa.

Cavelan, A., Golfier, F., Colombano, S., Davarzani, H., Deparis, J., & Faure, P. (2022). A critical review of the influence of groundwater level fluctuations and temperature on LNAPL contaminations in the context of climate change. Science of the Total Environment, 806. doi:10.1016/j.scitotenv.2021.150412.

Alazaiza, M. Y. D., Ngien, S. K., Bob, M. M., Kamaruddin, S. A., & Ishak, W. M. F. (2018). Non-aqueous phase liquids distribution in three-fluid phase systems in double-porosity soil media: Experimental investigation using image analysis. Groundwater for Sustainable Development, 7, 133–142. doi:10.1016/j.gsd.2018.04.002.

Jiang, W., Yang, J., Zhu, J., Liu, Y., Chen, Y., Sun, Q., Wang, Y., & Zhang, H. (2018). Experimental study on the transport characteristics of buried pipeline leakage and the performance of groundwater remediation system. Environmental Science and Pollution Research, 25(36), 36570–36580. doi:10.1007/s11356-018-3490-0.

Yang, Z. H., Verpoort, F., Dong, C. Di, Chen, C. W., Chen, S., & Kao, C. M. (2020). Remediation of petroleum-hydrocarbon contaminated groundwater using optimized in situ chemical oxidation system: Batch and column studies. Process Safety and Environmental Protection, 138, 18–26. doi:10.1016/j.psep.2020.02.032.

Belfort, B., Weill, S., Fahs, M., & Lehmann, F. (2019). Laboratory experiments of drainage, imbibition and infiltration under artificial rainfall characterized by image analysis method and numerical simulations. Water (Switzerland), 11(11), 2232. doi:10.3390/w11112232.

Smith, J. W. N., Davis, G. B., Devaull, G. E., Garg, S., Newell, C. J., & Rivett, M. O. (2022). Natural Source Zone Depletion (NSZD): from process understanding to effective implementation at LNAPL-impacted sites. Quarterly Journal of Engineering Geology and Hydrogeology, 55(4), 1-10. doi:10.1144/qjegh2021-166.

Haberer, C. M., Rolle, M., Cirpka, O. A., & Grathwohl, P. (2012). Oxygen Transfer in a Fluctuating Capillary Fringe. Vadose Zone Journal, 11(3), 56. doi:10.2136/vzj2011.0056.

Mahmoudi, D., Rezaei, M., Ashjari, J., Salehghamari, E., Jazaei, F., & Babakhani, P. (2020). Impacts of stratigraphic heterogeneity and release pathway on the transport of bacterial cells in porous media. Science of the Total Environment, 729, 138804. doi:10.1016/j.scitotenv.2020.138804.

Mineo, S. (2023). Groundwater and soil contamination by LNAPL: State of the art and future challenges. Science of The Total Environment, 874, 162394. doi:10.1016/j.scitotenv.2023.162394.

Zaiter, A., Sabtu, N., & Almaliki, D. F. (2024). Equations and methodologies of inlet drainage system discharge coefficients: A review. Open Engineering, 14(1), 20220598. doi:10.1515/eng-2022-0598.

Fetter, C. W., Boving, T., & Kreamer, D. (2017). Contaminant hydrogeology. Waveland Press, Long Grove, United States.

Huang, X., Liu, G., Xia, C., & Yang, M. (2021). Simulated groundwater dynamics and solute transport in a coastal phreatic aquifer subjected to different tides. Marine Georesources and Geotechnology, 39(6), 719–734. doi:10.1080/1064119X.2020.1754975.

Koohbor, B., Colombano, S., Harrouet, T., Deparis, J., Lion, F., Davarzani, D., & Ataie-Ashtiani, B. (2023). The effects of water table fluctuation on LNAPL deposit in highly permeable porous media: A coupled numerical and experimental study. Journal of Contaminant Hydrology, 256. doi:10.1016/j.jconhyd.2023.104183.

Williams, M. D., & Oostrom, M. (2000). Oxygenation of anoxic water in a fluctuating water table system: An experimental and numerical study. Journal of Hydrology, 230(1–2), 70–85. doi:10.1016/S0022-1694(00)00172-4.

Lenhard, R. J., Oostrom, M., & Dane, J. H. (2004). A constitutive model for air–NAPL–water flow in the vadose zone accounting for immobile, non-occluded (residual) NAPL in strongly water-wet porous media. Journal of Contaminant Hydrology, 73(1–4), 283–304. doi:10.1016/j.jconhyd.2004.07.005.

Alazaiza, M. Y. D., Ngien, S. K., Copty, N., Bob, M. M., & Kamaruddin, S. A. (2019). Assessing the influence of infiltration on the migration of light non-aqueous phase liquid in double-porosity soil media using a light transmission visualization method. Hydrogeology Journal, 27(2), 581–593. doi:10.1007/s10040-018-1904-1.

Gupta, P. K., Yadav, B., & Yadav, B. K. (2019). Assessment of LNAPL in Subsurface under Fluctuating Groundwater Table Using 2D Sand Tank Experiments. Journal of Environmental Engineering, 145(9), 1–13. doi:10.1061/(asce)ee.1943-7870.0001560.

Almaliki, D. F., & Ramli, H. (2024). A Review on Simplified Image Analysis Method for Measuring LNAPL Saturation Under Groundwater Table Fluctuation. Lecture Notes in Civil Engineering, 386, 93–108. doi:10.1007/978-981-99-6026-2_8.

Ramli, M. H. B. (2014). Dynamic effects on migration of light non-aqueous phase liquids in subsurface. Ph.D. Thesis, Kyoto University, Kyoto, Japan.

Qi, S., Luo, J., O’Connor, D., Wang, Y., & Hou, D. (2020). A numerical model to optimize LNAPL remediation by multi-phase extraction. Science of the Total Environment, 718, 137309. doi:10.1016/j.scitotenv.2020.137309.

Shen, H., Huang, Y., Illman, W. A., Su, Y., & Miao, K. (2023). Migration behaviour of LNAPL in fractures filled with porous media: Laboratory experiments and numerical simulations. Journal of Contaminant Hydrology, 253, 104118. doi:10.1016/j.jconhyd.2022.104118.

Alazaiza, M. Y. D., Copty, N. K., & Abunada, Z. (2020). Experimental investigation of cosolvent flushing of DNAPL in double-porosity soil using light transmission visualization. Journal of Hydrology, 584. doi:10.1016/j.jhydrol.2020.124659.

Yimsiri, S., Euaapiwatch, S., Flores, G., Katsumi, T., & Likitlersuang, S. (2018). Effects of water table fluctuation on diesel fuel migration in one-dimensional laboratory study. European Journal of Environmental and Civil Engineering, 22(3), 359–385. doi:10.1080/19648189.2016.1197158.

Van De Ven, C. J. C., Scully, K. H., Frame, M. A., Sihota, N. J., & Mayer, K. U. (2021). Impacts of water table fluctuations on actual and perceived natural source zone depletion rates. Journal of Contaminant Hydrology, 238, 103771. doi:10.1016/j.jconhyd.2021.103771.

Alazaiza, M. Y. D., Ramli, M. H., Copty, N. K., Sheng, T. J., & Aburas, M. M. (2020). LNAPL saturation distribution under the influence of water table fluctuations using simplified image analysis method. Bulletin of Engineering Geology and the Environment, 79(3), 1543–1554. doi:10.1007/s10064-019-01655-3.

Flores, G., Katsumi, T., Eua-Apiwatch, S., Lautua, S., & Inui, T. (2016). Migration of different LNAPLs in subsurface under groundwater fluctuating conditions by the simplified image analysis method. Journal of Geo-Engineering Sciences, 3(1), 15–30. doi:10.3233/jgs-150033.

Azimi, R., Vaezihir, A., Lenhard, R. J., & Majid Hassanizadeh, S. (2020). Evaluation of LNAPL behavior in water table inter-fluctuate zone under groundwater drawdown condition. Water (Switzerland), 12(9), 2337. doi:10.3390/W12092337.

Alazaiza, M. Y. D., Ramli, M. H., Copty, N. K., & Ling, M. C. (2021). Assessing the impact of water infiltration on LNAPL mobilization in sand column using simplified image analysis method. Journal of Contaminant Hydrology, 238, 103769. doi:10.1016/j.jconhyd.2021.103769.

Lenhard, R. J., Rayner, J. L., & Davis, G. B. (2017). A practical tool for estimating subsurface LNAPL distributions and transmissivity using current and historical fluid levels in groundwater wells: Effects of entrapped and residual LNAPL. Journal of Contaminant Hydrology, 205, 1–11. doi:10.1016/j.jconhyd.2017.06.002.

Zheng, J., Yang, Y., Li, J., Zhang, H., & Ma, Y. (2023). The Migration Mechanism of BTEX in Single- and Double-Lithology Soil Columns under Groundwater Table Fluctuation. Toxics, 11(7), 630. doi:10.3390/toxics11070630.

Flores, G., Katsumi, T., Inui, T., & Kamon, M. (2011). A simplified image analysis method to study LNAPL migration in porous media. Soils and Foundations, 51(5), 835–847. doi:10.3208/sandf.51.835.

Alazaiza, M. Y. D., Maskari, T. Al, Albahansawi, A., Amr, S. S. A., Abushammala, M. F. M., & Aburas, M. (2021). Diesel migration and distribution in capillary fringe using different spill volumes via image analysis. Fluids, 6(5), 189. doi:10.3390/fluids6050189.

Hanlan, J., Skoog, D. A., & West, D. M. (1973). Principles of Instrumental Analysis. Studies in Conservation, 18(1), 45. doi:10.2307/1505543.

Kechavarzi, C., Soga, K., & Wiart, P. (2000). Multispectral image analysis method to determine dynamic fluid saturation distribution in two-dimensional three-fluid phase flow laboratory experiments. Journal of Contaminant Hydrology, 46(3–4), 265–293. doi:10.1016/S0169-7722(00)00133-9.

Bob, M. M., Brooks, M. C., Mravik, S. C., & Wood, A. L. (2008). A modified light transmission visualization method for DNAPL saturation measurements in 2-D models. Advances in Water Resources, 31(5), 727–742. doi:10.1016/j.advwatres.2008.01.016.

Alden, D.F., García-Rincón, J., Rivett, M.O., Wealthall, G.P., & Thomson, N.R. (2024). Complexities of Petroleum Hydrocarbon Contaminated Sites. Advances in the Characterisation and Remediation of Sites Contaminated with Petroleum Hydrocarbons. Environmental Contamination Remediation and Management. Springer, Cham, Switzerland. doi:10.1007/978-3-031-34447-3_1.

Yang, Y., Li, J., Lv, N., Wang, H., & Zhang, H. (2023). Multiphase migration and transformation of BTEX on groundwater table fluctuation in riparian petrochemical sites. Environmental Science and Pollution Research, 30(19), 55756–55767. doi:10.1007/s11356-023-26393-8.

Charbeneau, R. J. (2006). Groundwater hydraulics and pollutant transport. Waveland Press, Long Grove, United States.

Zuo, R., Wu, Z., Li, J., Zheng, S., Liu, J., Han, K., Liu, Y., & Wang, J. (2023). Retention effect and mode of capillary zone on the migration process of LNAPL pollutants based on experimental exploration. Ecotoxicology and Environmental Safety, 253, 114669. doi:10.1016/j.ecoenv.2023.114669.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-01-017

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Doaa F. Almaliki, Harris Ramli, Ali Zaiter

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message