Experimental Investigation of Single and Intermittent Light Non-Aqueous Phase Liquid Spills Under Dynamic Groundwater
Abstract
Doi: 10.28991/CEJ-2025-011-01-017
Full Text: PDF
Keywords
References
Vuruna, M., Veličković, Z., Perić, S., Bogdanov, J., Ivanković, N., & Bučko, M. (2017). The influence of atmospheric conditions on the migration of diesel fuel spilled in soil. Archives of Environmental Protection, 43(1), 73–79. doi:10.1515/aep-2017-0004.
Maire, J., Joubert, A., Kaifas, D., Invernizzi, T., Marduel, J., Colombano, S., Cazaux, D., Marion, C., Klein, P. Y., Dumestre, A., & Fatin-Rouge, N. (2018). Assessment of flushing methods for the removal of heavy chlorinated compounds DNAPL in an alluvial aquifer. Science of the Total Environment, 612, 1149–1158. doi:10.1016/j.scitotenv.2017.08.309.
He, Z., Liang, F., Meng, J., & Li, N. (2022). Effects of groundwater fluctuation on migration characteristics and representative elementary volume of entrapped LNAPL. Journal of Hydrology, 610. doi:10.1016/j.jhydrol.2022.127833.
Newell, C. J., Acree, S. D., Ross, R. R., & Huling, S. G. (1995). Ground Water Issue. United States Environmental Protection Agency, EPA/540/S-95/500.
Luciano, A., Viotti, P., & Papini, M. P. (2010). Laboratory investigation of DNAPL migration in porous media. Journal of Hazardous Materials, 176(1–3), 1006–1017. doi:10.1016/j.jhazmat.2009.11.141.
Agaoglu, B., Copty, N. K., Scheytt, T., & Hinkelmann, R. (2015). Interphase mass transfer between fluids in subsurface formations: A review. Advances in Water Resources, 79, 162–194. doi:10.1016/j.advwatres.2015.02.009.
Dalhat, M. N. (2005). Effect of rate of water table rise on LNAPL entrapment in uniform and well-graded sands. Ph.D. Thesis, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
Dobson, R., Schroth, M. H., & Zeyer, J. (2007). Effect of water-table fluctuation on dissolution and biodegradation of a multi-component, light nonaqueous-phase liquid. Journal of Contaminant Hydrology, 94(3–4), 235–248. doi:10.1016/j.jconhyd.2007.07.007.
Gomo, M. (2009). Site characterisation of LNAPL-contaminated fractured-rock aquifer. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa.
Cavelan, A., Golfier, F., Colombano, S., Davarzani, H., Deparis, J., & Faure, P. (2022). A critical review of the influence of groundwater level fluctuations and temperature on LNAPL contaminations in the context of climate change. Science of the Total Environment, 806. doi:10.1016/j.scitotenv.2021.150412.
Alazaiza, M. Y. D., Ngien, S. K., Bob, M. M., Kamaruddin, S. A., & Ishak, W. M. F. (2018). Non-aqueous phase liquids distribution in three-fluid phase systems in double-porosity soil media: Experimental investigation using image analysis. Groundwater for Sustainable Development, 7, 133–142. doi:10.1016/j.gsd.2018.04.002.
Jiang, W., Yang, J., Zhu, J., Liu, Y., Chen, Y., Sun, Q., Wang, Y., & Zhang, H. (2018). Experimental study on the transport characteristics of buried pipeline leakage and the performance of groundwater remediation system. Environmental Science and Pollution Research, 25(36), 36570–36580. doi:10.1007/s11356-018-3490-0.
Yang, Z. H., Verpoort, F., Dong, C. Di, Chen, C. W., Chen, S., & Kao, C. M. (2020). Remediation of petroleum-hydrocarbon contaminated groundwater using optimized in situ chemical oxidation system: Batch and column studies. Process Safety and Environmental Protection, 138, 18–26. doi:10.1016/j.psep.2020.02.032.
Belfort, B., Weill, S., Fahs, M., & Lehmann, F. (2019). Laboratory experiments of drainage, imbibition and infiltration under artificial rainfall characterized by image analysis method and numerical simulations. Water (Switzerland), 11(11), 2232. doi:10.3390/w11112232.
Smith, J. W. N., Davis, G. B., Devaull, G. E., Garg, S., Newell, C. J., & Rivett, M. O. (2022). Natural Source Zone Depletion (NSZD): from process understanding to effective implementation at LNAPL-impacted sites. Quarterly Journal of Engineering Geology and Hydrogeology, 55(4), 1-10. doi:10.1144/qjegh2021-166.
Haberer, C. M., Rolle, M., Cirpka, O. A., & Grathwohl, P. (2012). Oxygen Transfer in a Fluctuating Capillary Fringe. Vadose Zone Journal, 11(3), 56. doi:10.2136/vzj2011.0056.
Mahmoudi, D., Rezaei, M., Ashjari, J., Salehghamari, E., Jazaei, F., & Babakhani, P. (2020). Impacts of stratigraphic heterogeneity and release pathway on the transport of bacterial cells in porous media. Science of the Total Environment, 729, 138804. doi:10.1016/j.scitotenv.2020.138804.
Mineo, S. (2023). Groundwater and soil contamination by LNAPL: State of the art and future challenges. Science of The Total Environment, 874, 162394. doi:10.1016/j.scitotenv.2023.162394.
Zaiter, A., Sabtu, N., & Almaliki, D. F. (2024). Equations and methodologies of inlet drainage system discharge coefficients: A review. Open Engineering, 14(1), 20220598. doi:10.1515/eng-2022-0598.
Fetter, C. W., Boving, T., & Kreamer, D. (2017). Contaminant hydrogeology. Waveland Press, Long Grove, United States.
Huang, X., Liu, G., Xia, C., & Yang, M. (2021). Simulated groundwater dynamics and solute transport in a coastal phreatic aquifer subjected to different tides. Marine Georesources and Geotechnology, 39(6), 719–734. doi:10.1080/1064119X.2020.1754975.
Koohbor, B., Colombano, S., Harrouet, T., Deparis, J., Lion, F., Davarzani, D., & Ataie-Ashtiani, B. (2023). The effects of water table fluctuation on LNAPL deposit in highly permeable porous media: A coupled numerical and experimental study. Journal of Contaminant Hydrology, 256. doi:10.1016/j.jconhyd.2023.104183.
Williams, M. D., & Oostrom, M. (2000). Oxygenation of anoxic water in a fluctuating water table system: An experimental and numerical study. Journal of Hydrology, 230(1–2), 70–85. doi:10.1016/S0022-1694(00)00172-4.
Lenhard, R. J., Oostrom, M., & Dane, J. H. (2004). A constitutive model for air–NAPL–water flow in the vadose zone accounting for immobile, non-occluded (residual) NAPL in strongly water-wet porous media. Journal of Contaminant Hydrology, 73(1–4), 283–304. doi:10.1016/j.jconhyd.2004.07.005.
Alazaiza, M. Y. D., Ngien, S. K., Copty, N., Bob, M. M., & Kamaruddin, S. A. (2019). Assessing the influence of infiltration on the migration of light non-aqueous phase liquid in double-porosity soil media using a light transmission visualization method. Hydrogeology Journal, 27(2), 581–593. doi:10.1007/s10040-018-1904-1.
Gupta, P. K., Yadav, B., & Yadav, B. K. (2019). Assessment of LNAPL in Subsurface under Fluctuating Groundwater Table Using 2D Sand Tank Experiments. Journal of Environmental Engineering, 145(9), 1–13. doi:10.1061/(asce)ee.1943-7870.0001560.
Almaliki, D. F., & Ramli, H. (2024). A Review on Simplified Image Analysis Method for Measuring LNAPL Saturation Under Groundwater Table Fluctuation. Lecture Notes in Civil Engineering, 386, 93–108. doi:10.1007/978-981-99-6026-2_8.
Ramli, M. H. B. (2014). Dynamic effects on migration of light non-aqueous phase liquids in subsurface. Ph.D. Thesis, Kyoto University, Kyoto, Japan.
Qi, S., Luo, J., O’Connor, D., Wang, Y., & Hou, D. (2020). A numerical model to optimize LNAPL remediation by multi-phase extraction. Science of the Total Environment, 718, 137309. doi:10.1016/j.scitotenv.2020.137309.
Shen, H., Huang, Y., Illman, W. A., Su, Y., & Miao, K. (2023). Migration behaviour of LNAPL in fractures filled with porous media: Laboratory experiments and numerical simulations. Journal of Contaminant Hydrology, 253, 104118. doi:10.1016/j.jconhyd.2022.104118.
Alazaiza, M. Y. D., Copty, N. K., & Abunada, Z. (2020). Experimental investigation of cosolvent flushing of DNAPL in double-porosity soil using light transmission visualization. Journal of Hydrology, 584. doi:10.1016/j.jhydrol.2020.124659.
Yimsiri, S., Euaapiwatch, S., Flores, G., Katsumi, T., & Likitlersuang, S. (2018). Effects of water table fluctuation on diesel fuel migration in one-dimensional laboratory study. European Journal of Environmental and Civil Engineering, 22(3), 359–385. doi:10.1080/19648189.2016.1197158.
Van De Ven, C. J. C., Scully, K. H., Frame, M. A., Sihota, N. J., & Mayer, K. U. (2021). Impacts of water table fluctuations on actual and perceived natural source zone depletion rates. Journal of Contaminant Hydrology, 238, 103771. doi:10.1016/j.jconhyd.2021.103771.
Alazaiza, M. Y. D., Ramli, M. H., Copty, N. K., Sheng, T. J., & Aburas, M. M. (2020). LNAPL saturation distribution under the influence of water table fluctuations using simplified image analysis method. Bulletin of Engineering Geology and the Environment, 79(3), 1543–1554. doi:10.1007/s10064-019-01655-3.
Flores, G., Katsumi, T., Eua-Apiwatch, S., Lautua, S., & Inui, T. (2016). Migration of different LNAPLs in subsurface under groundwater fluctuating conditions by the simplified image analysis method. Journal of Geo-Engineering Sciences, 3(1), 15–30. doi:10.3233/jgs-150033.
Azimi, R., Vaezihir, A., Lenhard, R. J., & Majid Hassanizadeh, S. (2020). Evaluation of LNAPL behavior in water table inter-fluctuate zone under groundwater drawdown condition. Water (Switzerland), 12(9), 2337. doi:10.3390/W12092337.
Alazaiza, M. Y. D., Ramli, M. H., Copty, N. K., & Ling, M. C. (2021). Assessing the impact of water infiltration on LNAPL mobilization in sand column using simplified image analysis method. Journal of Contaminant Hydrology, 238, 103769. doi:10.1016/j.jconhyd.2021.103769.
Lenhard, R. J., Rayner, J. L., & Davis, G. B. (2017). A practical tool for estimating subsurface LNAPL distributions and transmissivity using current and historical fluid levels in groundwater wells: Effects of entrapped and residual LNAPL. Journal of Contaminant Hydrology, 205, 1–11. doi:10.1016/j.jconhyd.2017.06.002.
Zheng, J., Yang, Y., Li, J., Zhang, H., & Ma, Y. (2023). The Migration Mechanism of BTEX in Single- and Double-Lithology Soil Columns under Groundwater Table Fluctuation. Toxics, 11(7), 630. doi:10.3390/toxics11070630.
Flores, G., Katsumi, T., Inui, T., & Kamon, M. (2011). A simplified image analysis method to study LNAPL migration in porous media. Soils and Foundations, 51(5), 835–847. doi:10.3208/sandf.51.835.
Alazaiza, M. Y. D., Maskari, T. Al, Albahansawi, A., Amr, S. S. A., Abushammala, M. F. M., & Aburas, M. (2021). Diesel migration and distribution in capillary fringe using different spill volumes via image analysis. Fluids, 6(5), 189. doi:10.3390/fluids6050189.
Hanlan, J., Skoog, D. A., & West, D. M. (1973). Principles of Instrumental Analysis. Studies in Conservation, 18(1), 45. doi:10.2307/1505543.
Kechavarzi, C., Soga, K., & Wiart, P. (2000). Multispectral image analysis method to determine dynamic fluid saturation distribution in two-dimensional three-fluid phase flow laboratory experiments. Journal of Contaminant Hydrology, 46(3–4), 265–293. doi:10.1016/S0169-7722(00)00133-9.
Bob, M. M., Brooks, M. C., Mravik, S. C., & Wood, A. L. (2008). A modified light transmission visualization method for DNAPL saturation measurements in 2-D models. Advances in Water Resources, 31(5), 727–742. doi:10.1016/j.advwatres.2008.01.016.
Alden, D.F., García-Rincón, J., Rivett, M.O., Wealthall, G.P., & Thomson, N.R. (2024). Complexities of Petroleum Hydrocarbon Contaminated Sites. Advances in the Characterisation and Remediation of Sites Contaminated with Petroleum Hydrocarbons. Environmental Contamination Remediation and Management. Springer, Cham, Switzerland. doi:10.1007/978-3-031-34447-3_1.
Yang, Y., Li, J., Lv, N., Wang, H., & Zhang, H. (2023). Multiphase migration and transformation of BTEX on groundwater table fluctuation in riparian petrochemical sites. Environmental Science and Pollution Research, 30(19), 55756–55767. doi:10.1007/s11356-023-26393-8.
Charbeneau, R. J. (2006). Groundwater hydraulics and pollutant transport. Waveland Press, Long Grove, United States.
Zuo, R., Wu, Z., Li, J., Zheng, S., Liu, J., Han, K., Liu, Y., & Wang, J. (2023). Retention effect and mode of capillary zone on the migration process of LNAPL pollutants based on experimental exploration. Ecotoxicology and Environmental Safety, 253, 114669. doi:10.1016/j.ecoenv.2023.114669.
DOI: 10.28991/CEJ-2025-011-01-017
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Doaa F. Almaliki, Harris Ramli, Ali Zaiter

This work is licensed under a Creative Commons Attribution 4.0 International License.