Comprehensive Assessment for Liquefaction Vulnerability in Indonesia: Empirical and Element Simulation Approaches

Siti Nurlita Fitri, Kazuhide Sawada

Abstract


Historical liquefaction events have occurred at many locations, such as Yogyakarta and Lombok; the most significant flow side is in Palu. The standard Indonesian liquefaction assessment is based on a simplified empirical analysis. However, these methods only occasionally yield appropriate results. Contrastingly, the limited data from the cyclic test ensured that the liquefaction ratio could only partially support the liquefaction vulnerability. This research aims to re-examine the empirical approach that combines the constitutive model using LIQCA with a cyclic triaxial test (CXT) and cyclic simple shear (CSS). The empirical method was arranged using deterministic and probabilistic approaches, and the recommendation of the peak ground acceleration (PGA) threshold was validated. The results show a strong relationship between all calculation methods and the SPT value, which differs in the liquefaction strength ratio. This output offers the PGA recommendation results, reaching a 48% overestimation from the empirical method without considering the cyclic test. This research presents the development of a combination of the empirical method with the element simulation from CXT and CSS. This offers a comprehensive overview of the Indonesian requirement standard assessment for liquefaction vulnerability analysis.

 

Doi: 10.28991/CEJ-2025-011-01-019

Full Text: PDF


Keywords


LIQCA; Liquefaction; Element Simulation; Empirical; Peak Ground Acceleration; Probabilistic.

References


Zulfakriza, Z., Nugraha, A. D., Heryandoko, N., Ry, R. V., Muttaqy, F., Andika, A., Azhari, M. F., Putra, A. S., Palgunadi, K. H., Cummins, P. R., Supendi, P., Lesmana, A., Sahara, D. P., & Puspito, N. T. (2024). Seismic source analysis of the destructive earthquake November 21, 2022, Mw 5.6 Cianjur (Indonesia) from relocated aftershock. Scientific Reports, 14(1), 12142. doi:10.1038/s41598-024-60408-9.

Supendi, P., Winder, T., Rawlinson, N., Bacon, C. A., Palgunadi, K. H., Simanjuntak, A., Kurniawan, A., Widiyantoro, S., Nugraha, A. D., Shiddiqi, H. A., Ardianto, Daryono, Adi, S. P., Karnawati, D., Priyobudi, Marliyani, G. I., Imran, I., & Jatnika, J. (2023). A conjugate fault revealed by the destructive Mw 5.6 (November 21, 2022) Cianjur earthquake, West Java, Indonesia. Journal of Asian Earth Sciences, 257, 105830. doi:10.1016/j.jseaes.2023.105830.

Nurlita Fitri, S., Asih Aryani Soemitro, R., Dewa Warnana, D., & Sutra, N. (2018). Application of microtremor HVSR method for preliminary assessment of seismic site effect in Ngipik landfill, Gresik. MATEC Web of Conferences, 195. doi:10.1051/matecconf/201819503017.

Purwana, Y. M., Goro, G. L., Fitri, S. N., Setiawan, B., & Arbianto, R. (2022). Assessment of Seismic Loss in Surakarta School Buildings. Civil Engineering and Architecture, 10(5), 1772–1787. doi:10.13189/cea.2022.100506.

Kusumawardani, R., Chang, M., Upomo, T. C., Huang, R. C., Fansuri, M. H., & Prayitno, G. A. (2021). Understanding of Petobo liquefaction flowslide by 2018.09.28 Palu-Donggala Indonesia earthquake based on site reconnaissance. Landslides, 18(9), 3163–3182. doi:10.1007/s10346-021-01700-x.

Tanjung, M. I., Irsyam, M., Sahadewa, A., Iai, S., Tobita, T., & Nawir, H. (2023). Overview of Flowslide in Petobo during liquefaction of the 2018 Palu Earthquake. Soil Dynamics and Earthquake Engineering, 173. doi:10.1016/j.soildyn.2023.108110.

Geological Department. (2019). ATLAS Liquefaction vulnerability zone in Indonesia. Ministry of Energy and Mineral Resource, Bandung, Indonesia. (In Indonesian).

Cilia, M. G., Mooney, W. D., & Nugroho, C. (2021). Field Insights and Analysis of the 2018 Mw 7.5 Palu, Indonesia Earthquake, Tsunami and Landslides. Pure and Applied Geophysics, 178(12), 4891–4920. doi:10.1007/s00024-021-02852-6.

Kiyota, T., Furuichi, H., Hidayat, R. F., Tada, N., & Nawir, H. (2020). Overview of long-distance flow-slide caused by the 2018 Sulawesi earthquake, Indonesia. Soils and Foundations, 60(3), 722–735. doi:10.1016/j.sandf.2020.03.015.

Nanda, G. I., & Mulyani, A. (2021). Analysis of landscape changes using high-resolution satellite images at former rice fields after earthquake and liquefaction in Central Sulawesi Province. IOP Conference Series: Earth and Environmental Science, 648(1), 012203. doi:10.1088/1755-1315/648/1/012203.

Mase, L. Z. (2017). Experimental liquefaction study of Southern Yogyakarta using shaking table. Journal of Civil Engineering, 23(1), 11-18.

Tsimopoulou, V., Mikami, T., Hossain, T. T., Takagi, H., Esteban, M., & Utama, N. A. (2020). Uncovering unnoticed small-scale tsunamis: field survey in Lombok, Indonesia, following the 2018 earthquakes. Natural Hazards, 103(2), 2045–2070. doi:10.1007/s11069-020-04071-z.

National Academies of Sciences, Engineering, and Medicine. (2021). State of the art and practice in the assessment of earthquake-induced soil liquefaction and its consequences. National Academy of Sciences, Washington, United States. doi:10.17226/23474.

Fitri, S. N., & Sawada, K. (2024). Evaluation and Opportunities for Soil Liquefaction Vulnerability Research: Lesson Learned from Japan for Indonesia - A Bibliometric Analysis. Proceedings of the 2024 11th International Conference on Geological and Civil Engineering, ICGCE 2024, Springer Series in Geomechanics and Geoengineering, Springer, Cham, Switzerland. doi:10.1007/978-3-031-68624-5_2.

SNI 8460-2017. (2017). Geotechnical Design Requirements. Badan Standarisasi Nasional, Jakarta, Indonesia. (In Indonesian).

Seed, H. B., & Idriss, I. M. (1971). Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations division, 97(9), 1249-1273. doi:10.1061/JSFEAQ.0001662.

Ye, B., Ye, G., Zhang, F., & Yashima, A. (2007). Experiment and numerical simulation of repeated liquefaction-consolidation of sand. Soils and Foundations, 47(3), 547–558. doi:10.3208/sandf.47.547.

Oka, F., Yashima, A., Tateishi, A., Taguchi, Y., & Yamashita, S. (1999). A cyclic elasto-plastic constitutive model for sand considering a plastic-strain dependence of the shear modulus. Geotechnique, 49(5), 661–680. doi:10.1680/geot.1999.49.5.661.

The LIQCA Research and Development Group (2009). User's manual for LIQCA2D09. Representative: Oka, F. of Kyoto University, Kyoto, Japan.

Nishimura, S. (2022). Application of Probabilistic Models to Material Strength, Structural Strength and Disaster Occurrence. Journal of the Society of Materials Science, Japan, 71(2), 197–203. doi:10.2472/jsms.71.197.

Kato, K., Nagao, K., & Suemasa, N. (2019). Numerical simulation of undrained cyclic behavior for desaturated silica sands. Japanese Geotechnical Society Special Publication, 7(2), 505–515. doi:10.3208/jgssp.v07.080.

Kuribayashi, K., Hara, T., Sakabe, A., & Kuroda, S. (2021). A Study on Damages of Road Embankment on the Liquefaction Ground. Journal of Japan Association for Earthquake Engineering, 21(1), 1_46-1_63. doi:10.5610/jaee.21.1_46.

Santucci de Magistris, F., Lanzano, G., Forte, G., & Fabbrocino, G. (2013). A database for PGA threshold in liquefaction occurrence. Soil Dynamics and Earthquake Engineering, 54, 17–19. doi:10.1016/j.soildyn.2013.07.011.

Jalil, A., Fathani, T. F., Satyarno, I., & Wilopo, W. (2021). Liquefaction in Palu: the cause of massive mudflows. Geoenvironmental Disasters, 8(1). doi:10.1186/s40677-021-00194-y.

Aini, I., Wilopo, W., & Fathani, T. F. (2024). Development of Peak Ground Acceleration Using a Non-Linear Approach To Evaluate Liquefaction Potential in Sei Wampu Bridge, Langkat, North Sumatra, Indonesia. ASEAN Engineering Journal, 14(3), 41–52. doi:10.11113/aej.V14.20606.

Zakariya, A., Rifaí, A., & Ismanti, S. (2023). Comparative Analysis of Quantitative Indices for Evaluating the Liquefaction Potential of Medium-Dense Cohesionless Soil. Journal of GeoEngineering, 18(3), 93–102. doi:10.6310/jog.202309_18(3).1.

Idriss, I. M., & Boulanger, R. W. (2008). Soil liquefaction during earthquakes. Earthquake Engineering Research Institute, Oakland, United States.

Youd, T. L., & Idriss, I. M. (2001). Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(4), 297–313. doi:10.1061/(asce)1090-0241(2001)127:4(297).

Zakariya, A., Rifa’I, A., & Ismanti, S. (2023). Ground Motion and Liquefaction Study at Opak River Estuary Bantul. IOP Conference Series: Earth and Environmental Science, 1244(1). doi:10.1088/1755-1315/1244/1/012032.

Irdhiani, Rifa’i, A., Fathani, T. F., & Adi, A. D. (2024). Post-Earthquake Liquefaction Vulnerability Mapping by Swedish Weight Sounding and Standard Penetration Test. Civil Engineering Journal (Iran), 10(7), 2216–2232. doi:10.28991/CEJ-2024-010-07-09.

Kiyota, T., Shiga, M., Katagiri, T., Furuichi, H., & Nawir, H. (2022). Effect of Artesian Pressure on Liquefaction-Induced Flow-Slide: A Case Study of the 2018 Sulawesi Earthquake, Indonesia. Geotechnical, Geological and Earthquake Engineering, 52, 1579–1586. doi:10.1007/978-3-031-11898-2_140.

Mase, L. Z. (2017). Shaking table test of soil liquefaction in southern Yogyakarta. International Journal of Technology, 8(4), 747–760. doi:10.14716/ijtech.v8i4.9488.

Khashila, M., Hussien, M. N., Karray, M., & Chekired, M. (2021). Liquefaction resistance from cyclic simple and triaxial shearing: a comparative study. Acta Geotechnica, 16(6), 1735–1753. doi:10.1007/s11440-020-01104-6.

Rodriguez-Arriaga, E., & Green, R. A. (2018). Assessment of the cyclic strain approach for evaluating liquefaction triggering. Soil Dynamics and Earthquake Engineering, 113, 202–214. doi:10.1016/j.soildyn.2018.05.033.

Önalp, A., Özocak, A., Bol, E., Sert, S., Arslan, E., & Ural, N. (2024). An investigation into dynamic behaviour of reconstituted and undisturbed fine-grained soil during triaxial and simple shear. Bulletin of Earthquake Engineering, 22(11), 5599–5618. doi:10.1007/s10518-024-01980-3.

Oka, F., Oshima, A., & Fukai, H. (2023). Evaluation of liquefaction strength of Japanese natural sandy soil using triaxial and simple shear tests. Soils and Foundations, 63(4). doi:10.1016/j.sandf.2023.101349.

Sternik, K. (2024). Static liquefaction as a form of material instability in element test simulations of granular soil. Archives of Civil Engineering, 70(2), 309–322. doi:10.24425/ace.2024.149865.

Fujiwara, K., Ogawa, N., & Nakai, K. (2021). 3-D Numerical Analysis of Partial Floating Sheet-Pile Method as Countermeasure for Liquefaction. Journal of JSCE, 9(1), 138–147. doi:10.2208/journalofjsce.9.1_138.

Santucci de Magistris, F., Lanzano, G., Forte, G., & Fabbrocino, G. (2014). A peak acceleration threshold for soil liquefaction: lessons learned from the 2012 Emilia earthquake (Italy). Natural Hazards, 74(2), 1069–1094. doi:10.1007/s11069-014-1229-x.

BNBP (2017). Indonesian Seismic Sources and Seismic Hazard Maps: Center for research and development of housing and resettlement. Ministry of Public Works and Human Settlements, National Center for Earthquake Studies, Jakarta, Indonesia.

Orense, R. P. (2005). Assessment of liquefaction potential based on peak ground motion parameters. Soil Dynamics and Earthquake Engineering, 25(3), 225–240. doi:10.1016/j.soildyn.2004.10.013.

Mase, L. Z., Fathani, T. F., & Adi, A. D. (2021). A simple shaking table test to measure liquefaction potential of Prambanan Area, Yogyakarta, Indonesia. ASEAN Engineering Journal, 11(3), 89-108. doi:10.11113/aej.v11.16874.

Möller, J. K., Taborda, D. M. G., Kontoe, S., & Potts, D. M. (2024). A shear history model for capturing the liquefaction resistance of sands at various cyclic stress ratios. Computers and Geotechnics, 166. doi:10.1016/j.compgeo.2023.105940.

Juang, C. H., Ching, J., Luo, Z., & Ku, C. S. (2012). New models for probability of liquefaction using standard penetration tests based on an updated database of case histories. Engineering Geology, 133–134, 85–93. doi:10.1016/j.enggeo.2012.02.015.

Chen, C. J., & Juang, C. H. (2000). Calibration of SPT- and CPT-based liquefaction evaluation methods. Proceedings of Sessions of Geo-Denver 2000 - Innovations and Applications in Geotechnical Site Characterization, GSP 97, 285, 49–64. doi:10.1061/40505(285)4.

Porcino, D., Marcianò, V., & Granata, R. (2011). Undrained cyclic response of a silicate-grouted sand for liquefaction mitigation purposes. Geomechanics and Geoengineering, 6(3), 155–170. doi:10.1080/17486025.2011.560287.

Wu, J., Kammerer, A. M., Riemer, M. F., Seed, R. B., & Pestana, J. M. (2004). Laboratory study of liquefaction triggering criteria. 13th World Conference on Earthquake Engineering, 1-6 August, Vancouver, Canada.

Nong, Z. Z., Park, S. S., & Lee, D. E. (2021). Comparison of sand liquefaction in cyclic triaxial and simple shear tests. Soils and Foundations, 61(4), 1071–1085. doi:10.1016/j.sandf.2021.05.002.

Artati, H., Pawirodikromo, W., Rahardjo, P., & Makrup, L. (2023). Effect of Fines Content on Liquefaction Resistance During Steady-State Conditions. International Journal of GEOMATE, 25(109), 18–28. doi:10.21660/2023.109.3481.

Idriss, I. M., & Boulanger, R. W. (2010). SPT-based liquefaction triggering procedures. Report No. UCD/CGM-10, 2, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, United States.

Mandokhail, S. ullah J., Park, D., & Yoo, J. K. (2017). Development of normalized liquefaction resistance curve for clean sands. Bulletin of Earthquake Engineering, 15(3), 907–929. doi:10.1007/s10518-016-0020-7.

Boulanger, R. W., & Idriss, I. M. (2012). Probabilistic Standard Penetration Test–Based Liquefaction–Triggering Procedure. Journal of Geotechnical and Geoenvironmental Engineering, 138(10), 1185–1195. doi:10.1061/(asce)gt.1943-5606.0000700.

Chen, G., Xu, L., Kong, M., & Li, X. (2015). Calibration of a CRR model based on an expanded SPT-based database for assessing soil liquefaction potential. Engineering Geology, 196, 305–312. doi:10.1016/j.enggeo.2015.08.002.

Tripathi, C. B., Jha, P. K., & Agarwal, R. (2024). Method comparison: Statistical measurement correlation or agreement-most appropriate tool? Asian Journal of Medical Sciences, 15(1), 262–268. doi:10.3126/ajms.v15i1.58213.

Hanindya, K. A., Makrup, L., Widodo, & Paulus, R. (2023). Deterministic Seismic Hazard Analysis to Determine Liquefaction Potential Due to Earthquake. Civil Engineering Journal (Iran), 9(5), 1203–1216. doi:10.28991/CEJ-2023-09-05-012.

Bhutani, M., & Naval, S. (2020). Assessment of seismic site response and liquefaction potential for some sites using borelog data. Civil Engineering Journal (Iran), 6(11), 2103–2119. doi:10.28991/cej-2020-03091605.

Filali, K., & Sbartai, B. (2017). A comparative study between simplified and nonlinear dynamic methods for estimating liquefaction potential. Journal of Rock Mechanics and Geotechnical Engineering, 9(5), 955–966. doi:10.1016/j.jrmge.2017.05.008.

Towhata, I., Wu, W., & Borja, R. I. (2008). Geotechnical Earthquake Engineering. Springer Series in Geomechanics and Geoengineering, 1. doi:10.2113/gseegeosci.iii.1.158.

Poddar, P., Ojha, S., & Gupta, M. K. (2023). Probabilistic and deterministic-based approach for liquefaction potential assessment of layered soil. Natural Hazards, 118(2), 993–1012. doi:10.1007/s11069-023-06031-9.

Jalil, A., Fathani, T. F., Satyarno, I., & Wilopo, W. (2020). A study on the liquefaction potential in Banda Aceh city after the 2004 sumatera earthquake. International Journal of GEOMATE, 18(65), 147–155. doi:10.21660/2020.65.94557.

Quigley, M. C., Bastin, S., & Bradley, B. A. (2013). Recurrent liquefaction in Christchurch, New Zealand, during the Canterbury earthquake sequence. Geology, 41(4), 419–422. doi:10.1130/G33944.1.

Monaco, P., de Magistris, F. S., Grasso, S., Marchetti, S., Maugeri, M., & Totani, G. (2011). Analysis of the liquefaction phenomena in the village of Vittorito (L’Aquila). Bulletin of Earthquake Engineering, 9(1), 231–261. doi:10.1007/s10518-010-9228-0.

Hata, Y., Ichii, K., Nozu, A., Maruyama, Y., & Sakai, H. (2013). Ground motion estimation at the farthest liquefaction site during the 2011 off the pacific coast of Tohoku earthquake. Soil Dynamics and Earthquake Engineering, 48, 132–142. doi:10.1016/j.soildyn.2013.01.002.

Franke, K. W., Lingwall, B. N., Youd, T. L., Blonquist, J., & Liang, J. H. (2019). Overestimation of liquefaction hazard in areas of low to moderate seismicity due to improper characterization of probabilistic seismic loading. Soil Dynamics and Earthquake Engineering, 116, 681–691. doi:10.1016/j.soildyn.2018.10.040.

Berkat, B., Akhssas, A., Ouadif, L., & Bahi, A. (2024). Assessment of Liquefaction Potential by Comparing Semi-Empirical Methods Based on the CPT Test. Civil and Environmental Engineering, 20(1), 164-179. doi:10.2478/cee-2024-0014.

Touijrate, S., Baba, K., Ahatri, M., & Bahi, L. (2018). Validation and Verification of Semi-Empirical Methods for Evaluating Liquefaction Using Finite Element Method. MATEC Web of Conferences, 149, 02028. doi:10.1051/matecconf/201814902028.

Idriss, I. M., & Boulanger, R. W. (2006). Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dynamics and Earthquake Engineering, 26(2-4 SPEC. ISS.), 115–130. doi:10.1016/j.soildyn.2004.11.023.

Berkat, B., Akhssas, A., & Elfilali, O. (2024). Assessing Liquefaction Potential in Alluvial Plains through Spatiotemporal Analysis Using Liquefaction Probability Index. Civil Engineering Journal (Iran), 10(6), 2007–2018. doi:10.28991/CEJ-2024-010-06-018.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-01-019

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 siti nurlita fitri

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message